Численные методы решения обыкновенных дифференциальных уравнений
Обыкновенными дифференциальными уравнениями называются такие уравнения, которые содержат одну или несколько производных от искомой функции y=y (x). Их можно записать в виде
Наивысший порядок n входящей в уравнение Методы решения обыкновенных дифференциальных уравнений можно разбить на следующие группы: графические, аналитические, приближенные и численные. Графические методы используют геометрические построения. Аналитические методы встречаются в курсе дифференциальных уравнений. Для уравнений первого порядка (с разделяющимися переменными, однородных, линейных и др.), а также для некоторых типов уравнений высших порядков (например, линейных с постоянными коэффициентами) удается получить решения в виде формул путем аналитических преобразований. Приближенные методы используют различные упрощения самих уравнений путем обоснованного отбрасывания некоторых содержащихся в них членов, а также специальным выбором классов искомых функций. Численные методы решения дифференциальных уравнений в настоящее время являются основным инструментом при исследовании научно-технических задач, описываемых дифференциальными уравнениями. При этом необходимо подчеркнуть, что данные методы особенно эффективны в сочетании с использованием современных компьютеров. Метод Эйлера
Простейшим численным методом решения задачи Коши для ОДУ является метод Эйлера. Рассмотрим уравнение
Полученная аппроксимация ДУ имеет первый порядок, поскольку при замене Будем считать для простоты узлы равноотстоящими, т.е.
Заметим, что из уравнения
Поэтому Полагая i=0, с помощью соотношения
Требуемое здесь значение
Аналогично могут быть найдены значения сеточной функции в других узлах:
Построенный алгоритм называется методом Эйлера
Рисунок - 19 Метод Эйлера
Геометрическая интерпретация метода Эйлера дана на рисунке. Изображены первые два шага, т.е. проиллюстрировано вычисление сеточной функции в точках
Читайте также: Почему стероиды повышают давление?: Основных причин три... Как построить свою речь (словесное оформление):
При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... ![]() ©2015-2020 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (124)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |