Использование наглядности в процессе обучения математике
Помогая детям в поисках решения задачи, нужно сделать схематический рисунок или чертеж к задаче; объясняя прием вычисления, сопровождая пояснение действиями с предметами и соответствующими записями и т. д. При этом важно использовать наглядное пособие своевременно, иллюстрируя самую суть объяснения, привлекая к работе с пособием и пояснению самих учащихся. При раскрытии приема вычисления, измерения, решении задачи и т. д. надо особенно четко показывать движение (прибавить-придвинуть, вычесть-убрать, отодвинуть) [4, 10]. Сопровождение объяснения рисунком (чертежом) и математическими записями на доске не только облегчает детям восприятие материала, но и одновременно показывает образец выполнения работы в тетрадях [4]. Например: как расположить чертеж и запись решения в тетради, как обозначить периметр с помощью букв и т. п. При ознакомлении с новым материалом и, особенно, при закреплении знаний и умений надо так организовать работу с наглядными пособиями, чтобы учащиеся сами оперировали ими и сопровождали действия соответствующими пояснениями. Качество усвоения материала в большинстве случаев значительно повышается, так как в работу включаются различные анализаторы (зрительные, двигательные, речевые, слуховые). При этом дети овладевают не только математическими знаниями, но и приобретают умения самостоятельно использовать наглядные пособия. Учитель должен всячески поощрять детей к использованию наглядных средств, к самостоятельной работе. Важным условием эффективности использования наглядных пособий является применение на уроке достаточного и необходимого количества наглядного материала. Если наглядные средства применять там, где этого совсем не требуется, то они играют отрицательную роль, уводя детей в сторону от поставленной задачи. Наглядность, использованная в этом случае, не только не помогает, но наоборот, задерживает формирование умения решать задачи, т. е. выбирать действие над числами, данными в условии. Центральным в методике обучения решению задач является вопрос о том, как обучать детей решению текстовой задачи. Наблюдения за школьниками нередко показывают, что многие из них не только не хотят решать текстовые задачи, но и не умеют. Достичь такого умения можно, в частности, с помощью визуализации задачи. В современной школе, несомненно, присутствуют разнообразные приемы, способствующие развитию навыков решения текстовых задач, но заданий на построение вспомогательных моделей мало. Во многих учебниках преобладают модели в виде краткой записи и рисунка задачи, меньше моделей в виде чертежа и соответственно мало заданий на их сравнение. Для раскрытия сущности визуализации рассмотрим сначала понятие «модель».Слово «модель» в переводе с французского означает «образец». По видам средств, используемых для построения, все модели можно разделить на схематизированные и знаковые. Схематизированные модели, в свою очередь, делятся на вещественные (предметные) и графические, в зависимости от того, какое действие они обеспечивают. К знаковыммоделям, выполненным на естественном языке, можно отнести краткую запись текстовой задачи, таблицы. Знаковыми моделями текстовых задач, выполненными на математическом языке, являются: формула, выражение, уравнение, система уравнений, запись решения задачи по действиям. Визуализация текстовой задачи – это использование моделей (средств наглядности) для нахождения значений величин, входящих в задачу, данных и искомых чисел, а также для установления связей между ними. Методика обучения моделированию текстовых задач включает следующие этапы: 1) подготовительная работа к моделированию текстовых задач; 2) обучение моделированию текстовых задач; 3) закрепление умения решать задачи с помощью моделирования. Подготовительная работа должна быть направлена на выполнение предметных действий. Отображая эти действия графически, сначала в виде рисунка, затем в виде модели, учащиеся в дальнейшем подходят к знаково-символической форме: равенству, формуле, уравнению и т. д. Прежде чем представить задачу в виде модели, необходимо ознакомиться с ее содержанием. При решении текстовой задачи учитель часто сталкивается с проблемой текста в математике. Проблема в том, что его нужно «перевести» с русского на математический язык и наоборот [11, 20]. В этом случае необходимо выявление «математического ядра» задачи. Для этого нужно выделить величины и отношения между ними, которые заключены, как говорят дети, в «главных» словах и числах (буквах)». Можно с учащимися договориться подчеркивать слова карандашом в книге и цветным мелом на доске. Вопрос задачи всегда выделяем особо – это цель наших действий. Приведем пример. У Маши было 9 конфет. Она отдала 3 конфеты Толику и 2 конфеты Максиму, а 2 конфеты съела сама. Сколько конфет осталось у Маши. Таким образом, исключение части слов не повлияло на математическую модель задачи, то есть учащиеся совершенно безболезненно смогут понять, а, следовательно, решить данную задачу. После ознакомления с содержанием задачи нужно приступить к ее моделированию [12]. Особенностью предметного моделирования простых текстовых задач является использование предметов, замещающих образец. Это могут быть полоски бумаги, геометрические фигуры и так далее. Особенности графического моделирования простых текстовых задач в том, что они строятся как частные случаи отношения величин: величины в задаче находятся в отношении целого (С) и частей (А и В), что наглядно показывается в схеме: С
А B
Моделирование в виде схемы целесообразно использовать при решении задач, в которых даны отношения значений величин («больше», «меньше», «столько же»). Задачи, связанные с движением, целесообразнее моделировать с помощью чертежа, диаграммы или графика [2]. Наряду со схематическим моделированием, начиная с 1 класса, используется и знаковое моделирование – это краткая запись задачи [18]. В краткой записи фиксируются величины, числа – данные и искомые, а также некоторые слова, показывающие, о чем говорится в задаче: «было», «положили», «стало» и т. п. Краткую запись задачи можно выполнять в таблице и без нее. При табличной форме требуется выделение и название величины. Расположение числовых данных помогает установлению связей между величинами: на одной строке, одно под другим. Искомое число обозначается вопросительным знаком [2]. Закреплению навыков моделирования текстовых задач помогают упражнения творческого характера. К ним относятся моделирование задач повышенной трудности, задач с недостающими и лишними данными, а так же упражнения в составлении и преобразовании задач по данным моделям [15]. 1. Работа с незаконченными моделями: а) дополнение числовых данных и вопроса предложенной модели; б) дополнение какой-либо части модели. 2.Исправление специально допущенных ошибок в модели. 3.Составление условия задачи по данной модели. 4.Составление задач по аналогии. Итак, в данной работе, для использования визуальных моделей при решении задач, применяется методика, содержащая три вышеуказанных этапа. Первый этап данной методики предполагает выделение понятий, использующихся для составления модели, и отношений между ними. Его цель состоит в раскрытии смысла этих понятий и формирования навыков работы с этими понятиями. Второй этап предполагает применение выделенных понятий для построения визуальных моделей, обучения правилам этого построения. Результатом данного этапа является умения составлять модель по задаче и интерпретировать эту модель, т. е. опираясь на визуальную модель переходить к математической модели и формулировать из условий эквивалентные утверждения, удобные для дальнейшей работы. Третий этап предполагает закрепление полученных навыков. Роль и значение указанных этапов может варьироваться в зависимости от конкретного метода визуализации. Например, первый этап может отсутствовать в случае владения учащимися средствами моделирования. Важно только, чтобы всякий раз были в наличии результаты каждого этапа в указанной последовательности.
Популярное: Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас... Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы... Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы... Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (287)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |