Мегаобучалка Главная | О нас | Обратная связь


Занятие №8. Теорема сложения вероятностей.



2019-12-29 342 Обсуждений (0)
Занятие №8. Теорема сложения вероятностей. 0.00 из 5.00 0 оценок




Из четырех теорем о сложении вероятностей (для двух несовместных событий, для n несовместных событий (обобщение), для событий, образующих полную группу и для противоположных событий) практический интерес для слушателей курса представляют лишь две теоремы: первая и третья. Обе они часто используются при решении вероятностных задач, и поэтому их следует подробно с доказательством рассмотреть на занятии. Теорему о противоположных событиях (как частный случай третьей теоремы) можно поручить рассказать одному из учащихся.

Теорема 1. Пусть события А и В – несовместные, причем вероятности этих событий известны. Тогда вероятность появления одного из двух несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

Р(А+В)=Р(А)+Р(В).

Доказательство. Введем обозначения: n – общее число возможных элементарных исходов испытания; m1 – общее число исходов, благоприятствующих событию А; m2 – общее число исходов, благоприятствующих событию В.

Число элементарных исходов, благоприятствующих наступлению либо события А, либо события В, равно m1+m2. Следовательно,

Р(А+В)= .

Приняв во внимание, что  и , окончательно получим

Р(А+В)=Р(А)+Р(В).

Теорема 2. Вероятность появления одного из нескольких попарно несовместных событий, безразлично какого, равна сумме вероятностей этих событий:

Р(А12+…+Аn)=Р(А1)+Р(А2)+…+Р(Аn).

Теорема 3. Сумма вероятностей событий А1, А2, …, Аn, образующих полную группу, равна 1:

Р(А1)+Р(А2)+…+Р(Аn)=1.

Доказательство. Так как появление одного из событий полной группы достоверно, а вероятность достоверного события равна единице, то

Р(А12+…+Аn)=1. (*)

Любые два события полной группы несовместны, поэтому можно применить теорему сложения:

Р(А12+…+Аn)=Р(А1)+Р(А2)+…+Р(Аn). (**)

Сравнивая (*) и (**), получим

Р(А1)+Р(А2)+…+Р(Аn)=1.

Теорема 4. Сумма вероятностей противоположных событий равна 1:

Р(А)+Р( )=1.

Задачи:

1. В урне 30 шаров: 10 красных, 5 синих и 15 белых. Найти вероятность появления цветного шара.

2. На стеллаже библиотеки в случайном порядке расставлено 15 учебников, причем 5 из них в переплете. Библиотекарь берет наудачу три учебника. Найти вероятность того, что хотя бы один из взятых учебников окажется в переплете. (Решить двумя способами: с помощью 1 и 4 теорем).

3. Производится бомбометание по трем складам боеприпасов, причем сбрасывается одна бомба. Вероятность попадания в первый склад 0,01; во второй 0,008; в третий 0,025. При попадании в один из складов взрываются все три. Найти вероятность того, что склады будут взорваны.

4. Круговая мишень состоит из трех зон: I, II, III. Вероятность попадания в первую зону при одном выстреле 0,15, во вторую 0,23, в третью 0,17. найти вероятность промаха.

 



2019-12-29 342 Обсуждений (0)
Занятие №8. Теорема сложения вероятностей. 0.00 из 5.00 0 оценок









Обсуждение в статье: Занятие №8. Теорема сложения вероятностей.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (342)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.005 сек.)