Мегаобучалка Главная | О нас | Обратная связь


ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА



2019-12-29 210 Обсуждений (0)
ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА 0.00 из 5.00 0 оценок




 

       Цель экспериментальной части работы состоит в демонстрации возможности одновременного формирования в средах с квадратичной нелинейностью ряда голограмм с различными длинами волн объектного и референтного пучков, а также в измерении углов между направлениями распространения генерируемых голограммой волн с последующим сопоставлением результатов эксперимента и теории. Общая схема эксперимента представлена на рис.2.

       В качестве источника излучения используется одномодовый Nd:YАG лазер «Picochrom”, генерирующий световые импульсы длительностью 300 пс на длине волны l= 1064 нм, с выходной энергией до 15 мДж и частотой следования 1 Гц.

На рис.3 представлена оптическая схема схема лазера «Picochrom” с временной компрессией импульса на основе явления вынужденного рассеяния Мандельштама-Бриллюэна (ВРМБ), генерирующего импульсы излучения с длиной волны 528 нм и длительностью 300 пс. В лазерном модуле формируется излучение на длине волны 1.064 мкм с длительностью импульса ~ 5 нс.

 


Рис. 2. Оптическая схема установки для записи многочастотных голограмм в квадратичных нелинейных средах. M1 – M6 – зеркала; L1, L2 – линзы; Ba(NO3)2 - комбинационно активный кристалл нитрата бария; KTP – кристалл, обладающий значительной нелинейностью второго порядка, который использовался в качестве светочувствительной среды для записи динамических голограмм; SS - диффузно рассеивающий экран. 

 

Рис. 3. Оптическая схема схема лазера «Picochrom” с ВРМБ и ВКР компрессией.

 

Зеркала З1 и З2 образуют резонатор лазера длиной 45 см, в центре резонатора расположен активный элемент (АЭ) - кристалл иттрий алюминиевого граната, активированный Nd3+. Между активным элементом и задним глухим зеркалом расположены следующие элементы: СПМ – селектор поперечных мод, формирующий одночастотное излучение, НП - насыщающийся поглотитель, служащий для получения одиночных импульсов, Т ´ 2 - двукратный телескоп, позволяющий увеличить эффективную длину резонатора и совместно с диафрагмой Д формирующий одномодовое по поперечным индексам излучение. На выходе из лазерного модуля излучение, пройдя ромб Френеля, преобразует свою поляризацию из линейной в круговую и попадает на двукратный телескоп, расширяющий пучок излучения, для получения более узкой области фокусировки излучения в ВРМБ кювете, заполненной CCl4. От ВРМБ компрессора отражаются импульсы излучения длительностью 300 пс. Пройдя ромб Френеля, они приобретают ортогональную с первоначальной поляризацию, дополнительно усиливаются в АЭ и направляются интерференционным зеркалом и последующими элементами на дополнительный временной компрессор, на основе вынужденного комбинационного рассеяния (ВКР) состоящий из кюветы, наполненной CH4 под давлением 15...25 атм. От ВКР компрессора отражаются импульсы излучения с длительностью 30 пс на длине волны 560 нм. Излучение также может попадать на кристалл DKDP, удваивающий частоту излучения 300 пс импульсов (l = 528 нм) и использоваться для записи голограмм.

Другим существенным элементом экспериментальной установки являлся кристалл КТР толщиной 2 мм, обладающий значительной нелинейностью второго порядка, который использовался в качестве светочувствительной среды для записи динамических голограмм. Благодаря близкому к 90°-синхронизму при возбуждении генерации второй гармоники на длине волны выбранного источника излучения он позволяет достигнуть достаточной для уверенной регистрации изображений эффективности преобразования в широкой области углов падения лучей на кристалл, что необходимо при использовании неколлинеарных схем преобразования.

       Третьим ключевым элементом экспериментальной установки является комбинационно активный кристалл нитрата бария Ba(NO3)2 с высоким (11 см/ГВт) инкрементом стационарного ВКР-усиления и длиной, равной 80 мм, который дискретно смещал частоту падающего на него излучения с длиной волны 1,064 мкм на интервалы, кратные его стоксову сдвигу Dn S = 1047 см—1 . Эксперимент показал, что данный кристалл был способен осуществить тройной стоксов сдвиг излучения, в результате чего на выходе из кристалла можно было наблюдать одновременно 4 монохроматических волны: волну с основной частотой, соответствующей l = 1,064 мкм, а также 3 волны с l = 1,2; 1,37 и 1,6 мкм, претерпевших стоксовы сдвиги на Dn1 = 1047 см—1 ; Dn2 = 2х1047 см—1 ; Dn3 = 3х1047 см—1 соответственно.

       Система зеркал М1-М5 формирует из излучения основной частоты два равных по интенсивности пучка с вертикальной линейной поляризацией, углом схождения на голограмме в горизонтальной плоскости, равным 14.5° и разностью хода не более 5 мм, что обеспечивало практически полное временное перекрытие этих пучков на голограмме. Тщательное совмещение на частоте основного излучения этих пучков в плоскости голограммы позволяет достичь и пространственного их перекрытия. Линза L1 с фокусным расстоянием f = 1м повышала плотность излучения на кристалле нитрата бария (до 10 раз), что необходимо для увеличения в объектном пучке доли излучения со смещенными частотами.

Перемещение кристалла нитрата бария вдоль оси излучения позволяет регулировать эффективность преобразования основного излучения в стоксовы компоненты, а также число этих компонентов, вплоть до трех при максимальной плотности мощности падающего излучения. Картина углового распределения формируемых голограммой пучков проецируется линзой L2 (f = 250 мм) с однократным увеличением на диффузно рассеивающий экран SS (scattering screen), установленный в фокальной плоскости линзы на общем подвижном основании с цветной цифровой фотографической CCD камерой Fujifilm FinePix 4900 Zoom с числом пикселов 1200х2000. Угловое расстояние между пучками излучения (в радианах) связано с измеренным линейным расстоянием между ними Dx в фокальной плоскости линзы следующим соотношением:

 

Db ¢ = (Dx)/ f,                                                                                      (**)

 

где f – фокусное расстояние линзы, выраженное как и Dx, в мм.

       На практике свойство динамической c(2)- голограммы преобразовывать в реальном времени длину волны падающего излучения и изменять его направление, а также плоскость фокусировки может быть использовано в стекловолоконных линиях связи, когда в процессе прохождения сигнала через систему необходимо изменить его длину волны и (или) направление, чтобы направить его по другому пути (маршруту, адресу). Это необходимо для сверхбыстрой коммутации потоков информации в оптических вычислителях и линиях связи.



2019-12-29 210 Обсуждений (0)
ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА 0.00 из 5.00 0 оценок









Обсуждение в статье: ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (210)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)