Мегаобучалка Главная | О нас | Обратная связь


Словарь используемых в учебном пособии терминов.



2019-12-29 194 Обсуждений (0)
Словарь используемых в учебном пособии терминов. 0.00 из 5.00 0 оценок




 

ОПТОИНФОРМАТИКА является областью науки и техники, включающей совокупность средств, способов и методов человеческой деятельности, связанных с исследованием, разработкой, созданием и эксплуатацией новых материалов, технологий, приборов и устройств, направленных на передачу, прием, обработку, хранение и отображение информации на основе оптических технологий.

ОПТИЧЕСКОЕ ИЗЛУЧЕНИЕ - свет в широком смысле этого слова, электромагнитное излучение, длины волн которого занимают диапазон примерно от 1 нм до 1 мм (диапазон частот охватывает около 20 октав и заключен в интервале 1011 - 1017 Гц). К оптическому излучению помимо видимого излуче­ния, вызывающего у человека зрительное ощущение, относят ультрафиолетовое и инфракрасное излуче­ния. Объединение всех этих излучений в одну груп­пу объясняется как единством принципов их возбу­ждения, так и общностью методов их преобразова­ния и использования. Именно в диапазоне оптиче­ского излучения отчетливо проявляются одновре­менно волновые и корпускулярные свойства элек­тромагнитного излучения. Волновые свойства опти­ческого излучения обуславливают дифракцию, интерференцию, поляризацию света и многие другие явления. В то же время ряд оптиче­ских явлений (фотоэффект, фотохимические про­цессы) требуют для своего объяснения представле­ния об оптическом излучении как о потоке быст­рых частиц - фотонов. Эта двойственность приро­ды оптического излучения или так называемый корпускулярно-волновой дуализм сближает его с други­ми объектами микромира и находит общее объясне­ние в квантовой оптике. Различные виды оптиче­ского излучения классифицируют по следующим признакам: механизму возникновения (тепловое из­лучение, люминесцентное излучение, излучение Вавилова-Черенкова); однородности спектрального со­става (монохроматическое, немонохроматическое); упорядоченности ориентации электрического и маг­нитного векторов (естественное излучение, поляри­зованное линейно, эллиптически, по кругу); харак­теру рассеяния потока излучения (направленное, диффузное, смешанное) и т.д. Важнейшим ка­чеством оптического излучения является его спо­собность переносить информацию. Любое оптиче­ское излучение, даже не подвергнутое каким-либо преобразованиям, уже содержит большой объем ин­формации как об источнике этого излучения, так и о среде, сквозь которую распространяется это излучение. Объем информации, переносимой оптиче­ским излучением, возрастает, если используются ме­тоды преобразования оптического излучения, целе­направленно повышающие его информационную со­держательность. Поэтому важнейшей задачей много­численных разделов оптики является получение, ре­гистрация и обработка информации, заключенной в оптическом излучении. Принципиальным ограниче­нием при передаче информации с помощью оптиче­ского излучения, распространяющегося в свободном пространстве, является дифракция: вся информация, заключенная в сигналах с пространственной часто­той, превышающей l-1 ( l - длина волны излуче­ния), практически не передается. Минимальный пространственный период изменения сигнала дол­жен быть значительно больше длины световой вол­ны, если необходимо передать информацию о нали­чии таких изменений на расстояние, большее не­скольких длин волн [1, 2].

СВЕТ (ВИДИМОЕ ИЗЛУЧЕНИЕ) - электромаг­нитное излучение, которое может непосредственно вызывать зрительное ощущение у человека. Границы спектральной области видимого излучения условны и могут выбираться различными для разных приме­нений. Нижняя граница обычно считается лежащей между 380 и 400 нм, верхняя - между 760 и 780 нм (1 нм = 10-9 м). Видимое излучение содержит сле­дующие основные составляющие с длинами волн: красную 760-620 нм, оранжевую 620-590 нм, желтую 590-560 нм, зеленую 560-500 нм, голубую 500-480 нм, синюю 480-450 нм и фиолетовую 450-400 нм. Более широкое толкование термина "свет" означает, что речь идет об оптическом излу­чении, которое включает ультрафиолетовое и ин­фракрасное излучения, хотя непосредственно глазом они не воспринимаются [3].

ИСТОЧНИКИ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ (ИСТОЧНИКИ СВЕТА) - преобразователи раз­личных видов энергии в электромагнитную энергию оптического диапазона с условными границами от 1011 до 1017 Гц, что соответствует длинам волн из­лучения в вакууме от единиц нанометров до не­скольких миллиметров. Источники классифицируют по признакам, которые позволяют отнести их к од­ной из двух больших групп - естественным и искус­ственным источникам излучения. Естественными И.О.И. являются Солнце, другие звезды, атмосфе­ра планет и разряды в них, объекты животного и расти­тельного мира. Искусственные И.О.И. различаются в зависимости от того, какой процесс лежит в основе получения излучения опти­ческого диапазона. Особенностью многих естест­венных и искусственных И.О.И. является то, что их излучение включает не только собственное, харак­терное для них излучение, но и рассеянное или от­раженное излучение других источников, например, Солнца. С учетом этого обстоятельства И.О.И. раз­деляют на источники-цели (или источники-объекты наблюдения) и источники, создающие излучение, сопровождающее проведение наблюдений. Такое из­лучение принято называть фоном. Разнообразие И.О.И. определяется многочис­ленностью способов преобразования различных ви­дов энергии в световую, большой широтой оптического диапазона спектра, большим различием тре­бований, которым должны удовлетворять И.О.И., применяемые в науке и технике. Искусственные И.О.И. классифицируют по видам излучений, роду используемой энергии, признакам эксплуатацион­ного характера, конструктивным особенностям, на­значению. По видам излучений И.О.И. разделяют на тепловые и люминесцентные. Тепловыми источ­никами оптического диапазона являются пламена, электрические лампы накаливания, стержневые и плоскостные излучатели с электронагревом, моде­ли абсолютно черного тела, излучатели с газовым нагревом. Источники этого типа имеют, как прави­ло, сплошной спектр. В люминесцентных И.О.И. используется люминесценция газов или твердых тел (кристаллофосфоров), возбуждаемая электри­ческим полем, например при прохождении через них электрического тока. Электрические разряды в газах используются в газоразрядных И.О.И., кото­рые различаются в зависимости от вида газового разряда (дуговой, искровой, тлеющий, безэлек­тродный), характера излучающей среды (газы, па­ры металлов), режима работы (непрерывный, им­пульсный, импульсно-периодический). Спектры испускания большинства газоразрядных И.О.И. ли­нейчатые, характерные для возбужденных атомов газа или пара, в которых происходит разряд. Рас­пределение энергии в спектре, КПД, величина све­тового и лучистого потоков, яркость и другие ха­рактеристики зависят от рода газа или пара, его давления, величины разрядного тока, межэлектрод­ного расстояния и других условий. В электролю­минесцентных И.О.И. излучение твердых тел воз­никает либо в результате инжекционной электро­люминесценции, характерной для p- n - перехода, включенного в цепь постоянного тока, либо в ре­зультате предпробойной электролюминесценции, наблюдаемой у порошкообразных активированных кристаллофосфоров при помещении их в диэлек­трик между обкладками конденсатора, на который подается переменное напряжение. В катодолюминесцентных И.О.И. люминофор возбуждается бы­стрыми электронами. В радиоизотопных И.О.И. люминесценцию возбуждают продуктами радиоак­тивного распада некоторых изотопов. Особое ме­сто среди И.О.И. занимает источник излучения Черенкова-Вавилова, которое сопровождает пучок электронов, движущихся, например, в жидкой сре­де со сверхсветовой скоростью и которое не явля­ется по своей природе люминесценцией [2, 4].

ДЛИНА ВОЛНЫ - расстояние в направлении рас­пространения периодической волны между двумя последовательными точками с одной и той же фазой колебаний; характеризует пространственный период волны. Длина волны ( l) связана с периодом колеба­ний (T) и фазовой скоростью (uф) распространения волн соотношением l = ифТ. Длины волн оптиче­ского излучения измеряют в микронах (мкм) и на­нометрах (нм); в эмиссионной спектроскопии длины волн спектральных линий измеряют в ангстремах (Å): 1 Å = 10-1 нм = 10-10 м [5]. 

ВОЛНОВОЕ ЧИСЛО - модуль волнового вектора, который в изотропной среде совпадает по направле­нию с направлением нормали к волновому фронту. В.Ч. связано с круговой частотой (w), фазовой ско­ростью (uф) и ее пространственным периодом (длиной волны l) соотношением k = 2 p/ l = w/uф . В спектроскопии В.Ч. называют величину, обратную длине волны (l-1) в вакууме. Для обозначения вол­нового числа в этом случае используют s или n . При анализе периодических процессов, развиваю­щихся в пространстве, используется понятие про­странственной частоты ( l-1) или круговой про­странственной частоты (2 p/ l). Единица измерения В.Ч. и пространственной частоты - обратный метр (м-1), обратный сантиметр (см-1) [5].

МОНОХРОМАТИЧЕСКОЕ ИЗЛУЧЕНИЕ [от греч. monos - один, единственный и chroma - цвет) -электромагнитное излучение одной, строго постоян­ной частоты. В более широком смысле слова - излучение очень узкой области частот или длин волн, которое может быть охарактеризовано одним значением частоты или длины волны. Происхожде­ние термина связано с тем, что различие в частоте световых волн воспринимается человеком как раз­личие в цвете. Однако электромагнитные волны ви­димого диапазона, лежащие в интервале длин волн 380-760 нм, не отличаются от электромагнитных волн других диапазонов (ИК излучение, УФ излуче­ние, рентгеновское излучение и др.), по отношению к которым также используется термин "монохрома­тический" (одноцветный), хотя никакого ощущения цвета эти волны не вызывают. Теория электромаг­нитного излучения, основанная на уравнениях Мак­свелла, описывает любое М.И. как гармонические колебания, происходящие с неизменной амплитудой и частотой в течение бесконечно долгого времени. Плоская монохроматическая волна электромагнит­ного излучения служит примером полностью когерентного поля, параметры которого неизменны в любой точке пространства и известен закон их из­менения во времени. Однако процессы излучения всегда ограничены во времени, а потому понятие М.И. является идеализацией. Реальное излучение обычно представляет собой сумму некоторого числа монохроматических волн со случайными амплитуда­ми, частотами, фазами, поляризацией и направлени­ем распространения. Чем уже интервал, к которому принадлежат частоты наблюдаемого излучения, тем оно монохроматичнее. Так как идеальным М.И. не может быть по своей природе, то обычно моно­хроматическим считается излучение с узким спек­тральным интервалом, который можно приближен­но характеризовать одной частотой (длиной вол­ны). Чрезвычайно высокая монохроматичность ха­рактерна для излучения некоторых типов лазеров, у которых ширина спектрального интервала излу­чения не превышает 10-6 нм. Приборы, с помощью которых из спектра реального излучения выделяют узкие спектральные интервалы, называ­ются монохроматорами.

ВОЛНОВОЙ ФРОНТ (ВОЛНОВАЯ ПОВЕРХ­НОСТЬ) - поверхность, во всех точках которой волна имеет в данный момент времени одинаковую фазу. Распространение волны происходит в направ­лении нормали к В.Ф. и может рассматриваться как движение В.Ф. через среду. В простейшем случае В.Ф. представляет плоскую поверхность, а соответ­ствующая ему волна называется плоской. Существу­ют также сферические, цилиндрические и другие В.Ф. Излучение точечного источника в изотропной среде имеет В.Ф. сферической формы.

ФАЗОВАЯ СКОРОСТЬ - скорость распростране­ния фазы гармонической волны в определенном направлении. Понятие Ф.С. можно применять, если гармоническая волна распространяется без измене­ния формы, что всегда выполняется при отсутствии дисперсии в линейных средах. Если имеет место зависимость Ф.С. от частоты (длины волны), то то­гда говорят о дисперсии скорости волн. При нали­чии дисперсии негармонические волны меняют свою форму и понятие Ф.С. по отношению к таким волнам становится неприемлемым. В этом случае кроме Ф.С. вводят так называемую групповую ско­рость, которая характеризует скорость распростра­нения всей группы волн. В отличие от групповой скорости Ф.С. нельзя измерить непосредственно. Ее определяют из соотношения uФ = с/п (с - скорость света в вакууме, п - показатель преломления сре­ды) [6].

ГРУППОВАЯ СКОРОСТЬ - скорость движения группы волн, образующих в каждый данный момент времени локализованный в пространстве волновой пакет. Возникновение волнового пакета возможно у волн любой природы. Волновой пакет может быть разложен на сумму плоских монохроматических волн, частоты которых заключены в определенном интервале. Всякая реальная волна отождествляется с группой волн и представляет собой результат сло­жения бесконечных гармонических колебаний. Только в среде, лишенной дисперсии, реальная вол­на распространяется со скоростью, совпадающей с фазовой скоростью тех гармонических волн, сложе­нием которых она образована. На опыте обычно ре­гистрируют максимальную амплитуду, поэтому под Г.С. понимают скорость перемещения максимума энергии в исследуемой группе волн. Эта скорость может отличаться от скорости горбов и впадин волн, составляющих группу, каждая из которых пе­ремещается с фазовой скоростью. Связь между групповой и фазовой скоростями определяется фор­мулой Релея:

 

Понятие Г.С. играет важную роль в физике и техни­ке, поскольку все методы измерения скоростей распространения волн, связанные с задержкой сигна­лов, позволяют определить именно Г.С. Согласно теории относительности Г.С. всегда меньше скоро­сти света в вакууме: иГ < с; для фазовых скоростей таких ограничений не существует, и волны с иФ > с называют быстрыми, а с иФ < с - медленными [6].

ФОТОН [от греч. phö tos - свет] - элементарная квазичастица, квант электромагнитного излучения. В соответствии с квантовой теорией электромагнит­ное излучение (оптическое излучение, свет) пред­ставляет собой поток квазичастиц - фотонов, имеющих нулевую массу покоя и движущихся в ва­кууме со скоростью с = 299792458 м×с-1, которая является максимальной скоростью движения элемен­тарных частиц материи. Энергия фотона (квант) равна Е = h n, где h = 6,6260755×10-34 Дж×с -постоянная Планка ; n - частота излучения в гер­цах. Корпускулярные свойства фотона определяются его массой т = Е/с2 и импульсом р = hv/ c . Волно­вые свойства фотона описываются частотой n и длиной волны l. Для вакуума l0 = c/ v = cT, где Т - период колебания волны. Принято считать, что энергия, распространяющаяся в пространстве в виде фотонов, пропорциональна квадрату амплитуды вол­ны, характеризующей данный фотон. Собственный момент количества движения (спин) фотона равен 1 и, следовательно, он относится к бозонам, к кото­рым применима статистика Бозе-Эйнштейна. Фотон может находиться только в двух спиновых состоя­ниях с проекциями спина на направление движения ±1; этому свойству фотонов в классической элек­тродинамике соответствует поперечность электро­магнитной волны. Представление о фотонах возник­ло в ходе развития квантовой теории и теории от­носительности. Понятия "фотон" и "квант света" часто рассматривают как синонимы [1].

ПЛАНКА ПОСТОЯННАЯ (КВАНТ ДЕЙСТ­ВИЯ) - универсальная физическая постоянная; от­ражает специфику явлений микромира и играет фундаментальную роль в квантовой механике, опре­деляя границы применимости классического описа­ния физических явлений. Постоянная Планка h име­ет размерность действия - эрг в секунду, джоуль в секунду. Значения h, полученные на основе различ­ных физических явлений (тепловое излучение, фо­тоэффект, коротковолновая граница сплошного рентгеновского спектра, эффект Джозефсона и др.), хорошо согласуются друг с другом. Наиболее точное значение этой постоянной получено на основе эф­фекта Джозефсона: h = 6,6260755×10-34 Дж×с. В расчетах часто используют величину ħ = h/2 p = 1,054 57266× 10-34 Дж×с, которую иногда назы­вают постоянной Дирака.

ОСНОВНОЕ СОСТОЯНИЕ квантовой системы - состояние, при котором квантовая система (атом, молекула, ион и др.) наиболее устойчива благодаря тому, что ее внутренняя энергия минимальна. На­пример, в атоме, который находится в основном со­стоянии, электроны наиболее прочно связаны с атомным ядром. Переход квантовой системы в воз­бужденное состояние происходит при увеличении ее внутренней энергии, что эквивалентно переходу квантовой системы с основного уровня с минималь­ной энергией на один из возможных возбужденных уровней. Находящаяся в основном состоянии кван­товая система может только поглощать излучение, переходя в возбужденное состояние.

ИЗЛУЧАТЕЛЬНЫИ КВАНТОВЫЙ ПЕРЕХОД - переход, совершаемый квантовой системой (атомом, ионом, молекулой и др.) и сопровождающийся спусканием или поглощением кванта электромагнит­ного излучения (фотона), удовлетворяющего фундаментальному соотношению hv1,2 = Е1 – Е2 где Е1 и Е2 - уровни энергии, между которыми совершается излучательный переход. Излучательные квантовые переходы могут быть спонтанными, т.е. не завися­щими от внешних воздействий на квантовую систе­му, и вынужденными, происходящими под воздейст­вием внешнего электромагнитного излучения резо­нансной частоты. Вероятности излучательных пере­ходов различны для разных квантовых переходов и зависят от свойств энергетических уровней, между которыми происходит переход. В отличие от безызлучательных квантовых переходов возможность из­лучательных переходов определяется правилами от­бора.

СПОНТАННОЕ ИЗЛУЧЕНИЕ (спонтанное ис­пускание) - электромагнитное излучение, обуслов­ленное спонтанными переходами, происходящими в атомах, молекулах, ионах и в других квантовых сис­темах, находящихся в возбужденном состоянии. Спонтанные переходы происходят самопроизвольно, случайно во времени, аналогично радиоактивному распаду. Спонтанное излучение не зависит от воз­действия на квантовую систему внешнего электро­магнитного излучения, и его закономерности опре­деляются исключительно свойствами самой системы. Момент спонтанного перехода принципиально не может быть предсказан, и потому можно говорить лишь о вероятности такого перехода. Случайность спонтанных переходов приводит к тому, что различ­ные атомы (квантовые системы) излучают независи­мо и несинхронно. Поэтому спонтанное излучение ненаправленно, некогерентно, неполяризованно и немонохроматично. Такое излучение в оптическом диапазоне испускают все источники света (лампы накаливания, люминесцентные лампы, электриче­ские разряды в газах и др.).

ВЫНУЖДЕННОЕ ИЗЛУЧЕНИЕ (индуцирован­ное излучение, вынужденное испускание) - элек­тромагнитное излучение, испускаемое квантовой системой, находящейся в возбужденном, т.е. нерав­новесном состоянии, под действием внешнего (вынуждающего) электромагнитного излучения. При вынужденном излучении частота, фаза, поляризация и направление распространения испущенной элек­тромагнитной волны полностью совпадают с соответствующими характеристиками волны вынуждаю­щей. Поэтому вынужденное излучение полностью когерентно с вынуждающим излучением. Для данной квантовой системы акт вынужденного излучения яв­ляется обратным акту поглощения; вероятности процессов вынужденного излучения и поглощения равны, а испускаемое излучение ничем не отличает­ся от вынуждающего. В обычных условиях процессы поглощения преобладают над процессами вынуж­денного излучения. Если в веществе имеет место инверсия населенностей для каких-либо уровней энергии, то вынужденное излучение преобладает над поглощением и его интенсивность может значитель­но превысить интенсивность спонтанного излуче­ния. На явлении вынужденного излучения основана работа лазеров, мазеров, квантовых усилителей, квантовых эталонов частоты и др. Существование вынужденного излучения было постулировано А. Эйнштейном в 1916 г. при теоретическом анализе процессов теплового излучения с позиций квантовой теории. Позднее существование вынужденного излу­чения было подтверждено экспериментально [1].

СПЕКТР ОПТИЧЕСКИЙ - совокупность со­ставляющих, на которые может быть разложено оп­тическое излучение; представляет собой распреде­ление в пространстве по длинам волн (частотам) энергии оптического излучения. В зависимости от того, какой процесс вызывает появление исследуе­мого оптического излучения, различают спектры ис­пускания (эмиссионные), поглощения (абсорбци­онные), отражения и рассеяния. Оптические спек­тры по виду разделяют на линейчатые, состоящие из отдельных спектральных линий, каждой из которых соответствует дискретное значение длины волны(частоты); полосатые, состоящие из отдельных групп тесно расположенных спектральных линий; сплошные (непрерывные), соответствующие излуче­нию или поглощению оптического излучения всех длин волн в некотором широком интервале. Спек­тры рассеяния и отражения возникают как результат взаимодействия оптического излучения с веществом и не связаны непосредственно с квантовыми пере­ходами между уровнями энергии. Изучением оптиче­ских спектров занимается спектроскопия. Оптиче­ские спектры получают, используя различные ис­точники возбуждения спектров, и исследуют с по­мощью спектральных приборов различных типов. Оптические спектры широко применяются для изу­чения состава и строения вещества.

СПЕКТРАЛЬНЫЕ ЛИНИИ - оптическое излу­чение, испускаемое или поглощаемое квантовой системой (атомом, ионом, молекулой и др.), энергия которого сосредоточена в интервале частот D n, с шириной, много меньшей средней частоты (n cp) оп­тического излучения этого интервала. Спектральные линии можно приближенно считать монохроматиче­скими с частотой (длиной волны), отвечающей мак­симуму интенсивности спектральной линии испус­кания или минимуму спектральной линии поглоще­ния. В обычных условиях отношение ширины спек­тральной линии D n к частоте n cp, отвечающей мак­симуму ее интенсивности испускания или минимуму поглощения, составляет 10-8 – 10-9 . Специальными методами можно получить спектральные линии, для которых это отношение равно 10-14- 10-15. Принятое в спектроскопической практике понятие "спектральная линия" обусловлено тем, что моно­хроматическое изображение входной щели, форми­руемое в фокальной плоскости спектрального при­бора, имеет вид линии. Минимальную ширину спек­тральной линии называют естественной или радиа­ционной: она отвечает энергетическому переходу с испусканием или поглощением света в изолирован­ном неподвижном атоме. Спектральные линии до­полнительно уширяются вследствие хаотического теплового движения атомов или молекул (допплеровское уширение) или любого другого воз­действия на излучающую квантовую систему.

МЕТАСТАБИЛЬНЫЙ УРОВЕНЬ - возбужденный уровень атома, иона, молекулы или другой квантовой системы, с которого излучательные кван­товые переходы на более низкие уровни энергии за­прещены правилами отбора. Благодаря этому время жизни на метастабильном уровне велико по сравнению с обычными временами жизни (10-8 c) возбу­жденных уровней. При строгом запрете и отсутствии безызлучательных переходов возбужденная кванто­вая система могла бы оставаться на метастабильном уровне неограниченно долго. Примеры метастабильных уровней - первые возбужденные уровни атомов гелия с энергиями возбуждения 19,82 эВ (триплетный уровень 3S1) и 20,61 эВ (синглетный уровень 1 S0). Накопление возбужденных атомов (молекул) на метастабильных уровнях приводит к осуществлению инверсной населенности, которая лежит в основе работы приборов и устройств кван­товой электроники.

ИНВЕРСИЯ НАСЕЛЕННОСТЕЙ (от лат. inversion – переворачиваю), возбуж­денное неравновесное состояние среды, при котором населенность (число возбужденных частиц) верхнего уровня энергии оказывается больше, чем у уровня энергии, расположенного ниже. В обычных усло­виях при тепловом равновесии в соответствии с распределением Больцмана населенность верхнего уровня всегда меньше, чем населенность нижнего уровня. Инверсия населенностей может быть создана только искусственно, путем внешнего воздействия на активную среду. Про­цесс создания в среде инверсии населенностей для какой либо пары уровней энергии называют накачкой. Система с инверсией населенностей всегда усиливает излучение за, счет преобладания процессов вынужденного испускания над процессами поглощения. Создание инверсии населенностей является необходимым условием генерации и усиления электромагнитных колебаний в устройствах квантовой электроники -лазерах, мазерах, квантовых, усилителях и др.

АКТИВНАЯ СРЕДА (рабочее тело), вещество в твердом, жидком или газообразном состоянии, на энергетических уровнях которого путем внешнего воздействия (накачки) может быть создана инверсия населенностей, что является необходимым условием для получения вы­нужденного (стимулированного излучения). Активные среды исполь­зуют в приборах квантовой электроники, в том числе в лазерах раз­личных типов, для генерации и усиления электромагнитного излучения оптического диапазона.

ОПТИЧЕСКИЙ РЕЗОНАТОР (от лат. resono - звучу в ответ, откликаюсь), система из двух и более обращенных друг к другу отражающих по­верхностей, в которой могут возбуждаться колебания электромагнит­ного поля оптического диапазона. В отличие от объемных резонато­ров СВЧ диапазона оптический резонатор является открытым резона­тором без боковых стенок, геометрические размеры которого во мно­го раз превышают длину волны излучения. В качестве оптических эле­ментов, составляющих оптический резонатор, используют зеркала, полу­прозрачные пластины, оптические стопы, призмы полного внутреннего отражения, дифракционные решетки. Открытый оптический резонатор, внутрь которого помешена активная среда с инверсией населенностей, представляет собой оптический генератор (лазер) с положительной обратной связью. Устройство оптического резонатора с активной сре­дой определяет характеристики генерируемого излучения, такие как распределение амплитуды и фазы в поперечном сечении, угловую рас­ходимость излучения, выходящего из резонатора, общую генерируемую мощность (энергию), частотный спектр и состояние поляризации. Расстояние между отражающими поверхностями резонатора определяется размерами применяемой активной среды и колеблется от десятых долей миллиметра (у полупроводниковых лазеров) до нескольких метров у мощных газовых лазеров. Различают линейные и кольцевые оптические резонаторы. Кольцевой резонатор образуется тремя или четырьмя элементами, а осевой контур имеет форму треугольника или четырех­угольника.

ЛАЗЕР (оптический квантовый генератор), источник когерентного электромагнитного излучения оптического диапазона, основанный на использовании явления генерации и усиления вынужденного излучения атомов, ионов или молекул, содержащихся в активной среде, помещен­ной в открытый оптический резонатор. Лазер содержит три основных компонента: активную среду, в которой создают инверсную населенность для какой либо пары или нескольких пар уровней; устройство для создания инверсии в активной среде (систему накачки) и устройство для осуществления обратной связи - оптический резона­тор. Как источник излучения лазер осуществляет преобразование энер­гии вынуждающего источника возбуждения активной среды в энергию ко­герентного лазерного излучения. Слово LASER - аббревиатура английской фразы “Light Amplification by Stimulated Emission of Radiation” которая дословно переводится как "-усиление света благодаря вынужденному излучению".

 

ЛИТЕРАТУРА

1. Ахманов С.А., Никитин С.Ю. Физическая оптика. - М., 1998. - 656 с.

2. Мирошников М.М. Теоретические основы оптико-электронных приборов. - Л., 1983. - 600 с.

3. Международный светотехнический словарь / Под ред. Лазарева Д.Н. - М., 1979.

4. Справочник по инфракрасной технике. T.I. Физика ИК излучения: Пер. с англ. / Под ред. Василье­ва Н.В., Мирошникова М.М. - М., 1995.

5. ГОСТ 7601-78. Физическая оптика. Термины и оп­ределения основных величин. - М.: Госстандарт, 1978.

6. Горелик Г.С. Колебания и волны. - М., 1959.



2019-12-29 194 Обсуждений (0)
Словарь используемых в учебном пособии терминов. 0.00 из 5.00 0 оценок









Обсуждение в статье: Словарь используемых в учебном пособии терминов.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (194)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.018 сек.)