Мегаобучалка Главная | О нас | Обратная связь


ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ



2019-12-29 192 Обсуждений (0)
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ 0.00 из 5.00 0 оценок




 

1. Установить назначение оптических элементов экспериментальной установки, а также соответствие их расположения со схемой эксперимента.

2. Включить пикосекундный лазер, поместить на оси пучка излучения индикаторную фотобумагу и по следу, оставленному лазерным пучком (отжигу), оценить его диаметр.

3. Проверить по отжигу лазерного пучка наличие пучков излучения в обоих плечах голографического интерферометра и совмещение их на голограмме.

4. После совмещения пучков визуально убедиться в появлении на рассеивающем экране за голограммой, расположенном в фокальной плоскости линзы, наряду с коллинеарными по отношению к пучкам накачки пучками излучения второй гармоники генерацию неколлинеарного пучка, который распространяется по биссектрисе угла схождения пучков, падающих на голограмму.

5. Убедиться в отсутствии неколлинеарного пучка при устранении любого из пучков, записывающих динамическую голограмму.

6. Ввести в объектный пучок нелинейный кристалл нитрата бария, смещающий частоту излучения и убедиться в появлении на рассеивающем экране за голограммой новых пучков, отличающихся по цвету и направлению распространения.

7. С помощью электронного фотоаппарата и масштабной линейки получить изображение с привязанным к нему масштабом.

8. Воспроизвести с помощью компьютера на экране монитора это изображение и после измерения расстояний между пучками различных цветов с помощью формулы линзы найти углы между направлениями распространения этих пучков. Данные занести в таблицу.

9. Вычислить значения углов по п.8 с помощью формул (*) и (**), используя известные значения углов схождения падающих на голограмму пучков, а также волновых чисел излучения накачки и стоксовых сдвигов, вносимых в частоту объектного пучка кристаллом нитрата бария. Данные занести в таблицу.

10. Сравнить полученные результаты. Проанализировать наличие и степень качественного и количественного соответствия данных теории и эксперимента, а также возможные причины их расхождения.

                                                      

 

 

Таблица

Расстояние Dx, в мм Угол в рад.   Теория Эксперимент
  Db ¢ 01    
  Db ¢02    

 

ОБРАБОТКА ЭКСПЕРИМЕНТАЛЬНЫХ РЕЗУЛЬТАТОВ

 

Отчет о проделанной лабораторной работе должен включать в себя:

1. Описание экспериментальной установки и её оптическая схема.

2. Полученные изображения лазерных пучков на различных длинах волн.

3. Таблицу измерений.

4. Сравнение полученных результатов. Проанализировать наличие и степень качественного и количественного соответствия данных теории и эксперимента, а также возможные причины их расхождения.

 

КОНТРОЛЬНЫЕ ВОПРОСЫ :

1. Что такое динамическая голография?

2. Что является динамической голограммой в проводимой работе?

3. Для чего необходим кристалл нитрата бария?

4. Основные свойства кристалла KTP.

 

Лабораторная работа № I-3 «Спектрально-временная обработка оптических сигналов с использованием интерферометра Фабри-Перо»

Цель работы: Изучение основных свойств высокоразрешающего спектрального прибора - интерферометра Фабри-Перо и измерения динамики спектра непрерывного гелий-неонового (He-Ne) лазера.

Объект исследования: газовый гелий-неоновый лазер, интерферометр Фабри-Перо, модовая структура излучения, ПЗС видеокамера с блоком компьютерной обработки.

Задачи, решаемые в работе:

1. Ознакомится с устройством интерферометра Фабри-Перо, спектрального прибора с высоким разрешением.

2. Ознакомится с устройством используемого гелий-неонового лазера. Измерить мощность лазерного излучения.

3. Ознакомится с оптической схемой измерения спектра лазерного излучения. Провести юстировку интерферометра и получить интерферограммы Фабри-Перо в виде колец с четко различимыми порядками.

4. При помощи регистрации интерферограмм Фабри-Перо ПЗС видеокамерой с блоком компьютерной обработки зарегистрировать переход от режима генерации на одной частоте (одной продольной спектральной моде) к режиму генерации на двух частотах (двух продольных спектральных модах).

5. Рассчитать ширины спектра лазерного излучения и длины когерентности с использованием зарегистрированной в цифровом виде интерферограммы Фабри-Перо.

 

СВЕДЕНИЯ ИЗ ТЕОРИИ

 

Рассмотрим идеальный плоский интерферометр Фабри-Перо (ИФП), состоящий из двух зеркал с одинаковыми амплитудными коэффициентами отражения r (по интенсивности R = r2), не поглощающих излучение на длине волны сигнала и расположенных параллельно на расстоянии d в среде с коэффициентом преломления n. Согласно известному принципу образования интерференционной картины в ИФП пучок излучения с длиной волны l, падающий на интерферометр под углом q, после многократного отражения от зеркал формирует на выходе интерферометра ряд пучков с убывающей амплитудой, оптической разностью хода между соседними пучками D, равной 2d n cos q , и временными сдвигами, кратными времени двойного прохода интерферометра (рис. 1). При падении на ИФП расходящегося пучка излучения в дальней зоне образуется ряд светлых концентрических колец под углами q i , определяемыми выражением:

2 d n cos q i = m l ,                                                                                           (1)

где m - порядок интерференции. Из (1) можно определить область дисперсии ИФП как спектрального прибора, или его свободный интервал (D l в длинах волн, D n в волновых числах или см-1), который составляет D l = l 2 /2d или D n = 1/2d, соответственно. Для вычисления числа разрешаемых линий в пределах свободного интервала которое равно эффективному числу интерферирующих пучков F = D n / d n обычно предполагают, что ИФП может зарегестрировать две одинаковые по интенсивности линии, расположенные на расстоянии d n, равном полуширинам их спектров, что приводит к выражению:

 .                                                                                                        (2)

Из (2) следует, что с приближением величины коэффициента отражения зеркал к 1 резкость неограниченно возрастает, в действительности же она ограничена дефектами (неровностями) поверхности, поглощением в зеркалах и в промежутке между ними. В реальных ИФП, используемых для спектральных исследований резкость составляет F = 20...30, что достаточно для большого круга приложений.

       Рис.1 иллюстрирует схему интерферометра Фабри-Перо и ход лучей в нем. На рис. 2 показана зависимость радиуса интерференционного кольца от порядка спектра а) и от длины волны в данном порядке б). Разность квадратов радиусов (диаметров) соседних интерференционных колец при одной и той же длине волны является величиной постоянной. Разность радиусов соседних колец уменьшается с увеличением порядка m. Из поперечного разреза интенсивности интерференционной картины интерферометра Фабри-Перо (рис.3) можно вычислить ширину спектра излучения по формуле: 

.                                                                                    (3)      

Длину когерентности можно оценить по формуле:

Lког = 1/Dn.                                                                                                     (4)

По формулам (3) можно также вычислить межмодовый спектральный интервал Dn1,2 и оптическую длину резонатора исследуемого лазера LР исходя из формулы:

LР = 1/Dn1,2 .                                                                                                       (5)

 

 

 

Рис.1. Ход лучей в интерферометре Фабри-Перо. Dвх – диаметр входного пучка; f1, f2 – фокусные расстояния линз; F – фокальная плоскость.

 

 

 

 

Рис. 2. Структура интерферограммы Фабри-Перо. m – порядок интерференции.

 



2019-12-29 192 Обсуждений (0)
ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ 0.00 из 5.00 0 оценок









Обсуждение в статье: ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (192)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.008 сек.)