Мегаобучалка Главная | О нас | Обратная связь


Необходимые исходные сведения и основные уравнения



2020-02-03 191 Обсуждений (0)
Необходимые исходные сведения и основные уравнения 0.00 из 5.00 0 оценок




ЭДС гальванического элемента Е равна разности условных электродных потенциалов его полуэлементов φ1 и φ2. Если значением диффузионного потенциала можно пренебречь то

 

Е = φ2 - φ1(2.1)

 

(индекс 2 относится к более положительному электродному потенциалу). Электрохимические реакции, протекающие на электродах, и сами электроды разделяют на следующие типы:

1. Электроды 1-го рода, обратимые по катиону: Меn + + ne = =Ме0, где Меn + и Ме0 ― окисленная и восстановленная формы вещества; n е - количество электронов. Потенциал электрода 1-го рода рассчитывается по уравнению Нернста:

 

φ = φ0 (aOx/ aRed),(2.2)

 

где φ - потенциал электрода, В; φ0 - стандартный потенциал электрода, В; n - число электронов, участвующих в элемен-тарной реакции; F - число Фарадея; aRed и aOx - активности вос-становленной и окисленной форм вещества, вступающего в реакцию. Множитель  при Т = 298 К и значении R , равном 8,31 Дж/(моль.К), равен 0,059. К электродам 1-го рода относятся:

а) серебряный электрод:


Ag+│Ag; Ag+ + e = Ag0; n =1;aOx = aAg+; aRed = aAg =1,

φ = φ0Ag+ lgaAg+; (2.3)

 

б) амальгамный электрод:

 

Cd2+ │[Cd] (Hg)Cd2+ + 2e = [Cd]ам; n = 2; aOx = aCd+

; φ = φ0AСd2+ ,(2.4)

 

где φ - потенциал амальгамного электрода при активности кадмия в амальгаме, а[Cd] = 1;

в) газовый электрод:

 

H+ │Pt, H2; H+ + e =½ H2; n = 1; aOx = aH++; aRed = = ;

φ = φ .(2.5)

 

2. Электроды 2-го рода, обратимые по аниону, представляют собой металл, покрытый труднорастворимой солью этого метал-ла, который находится в равновесии с раствором, содержащим соответствующий анион: AgCl + e = Ag + Cl-; n=1; aOx = aAgCl = 1; aRed = aCl-;

 

φ = φ ; (2.6)

φ02 = φ ,(2.7)


где j  ― стандартный потенциал серебряного электрода, обратимого по катиону; ПРAgCl ― произведение растворимости хлорида серебра. К электродам 2-го рода относятся:

а) газовый электрод:

 

½ Cl2 + e = Cl-; n = 1; aOx = ; aRed = ;

φ = φ . (2.8)

 

б) каломельный электрод Cl-│Hg2Cl2, на котором идет электродная реакция HgCl2 + 2e = Hg+ + 2Cl- ;

 

φ φ .

 

в) хлорсеребряный электрод Cl-│AgCl, Ag, на котором идет электродная реакция AgCl + e = Ag+ + Cl-;

 

φ φ .

 

Окислительно-восстановительные электроды (редокси – электроды) представляют собой инертный металл, опущенный в раствор, содержащий окисленную и восстановленную формы. Уравнение Нернста для данных электродов имеет вид:

 

φ Red = φ , (2.9)


где аОх(аО) ― активность окисленного иона; aRed(aВ) - активность восстановленного иона. Они делятся:

а) на простые: Fe3+ + e = Fe2+; n = 1; aRed = ; aOx = ;

 

φ = φ ; (2.10)

; n = 1; ; ;

φ = φ ;(2.11)

 

б) на сложные:

 

;

φ = φ . (2.12)

 

Хингидронный электрод: C6H4O2 (хинон) + 2H+ + 2e = = C6H4(OH)2 (гидрохинон);

n = 2, aRed = aгх = 1; аОх = ах = 1;

φ = φ + φ . (2.13)

 

Связь константы равновесия химической реакции и стандартных электродных потенциалов выражается соотноше-нием

 

 (φ02 – φ01).n/0,0592 (Т = 298 К). (2.14)


Для концентрационных цепей уравнение Нернста (при отсутствии диффузионного потенциала) для электродов типа

 

Cu | Cu2+ ║ Cu2+ | Cu ; Ag, AgCl | HCl ║ HCl | Ag, AgCl

a1 a2 (a2 > a1) a1 a2 (a2 > a1)

 

имеет вид

 

, (2.15)

 

где а1 и а2 ─ активности ионов Cu2+ и Cl- соответственно.

Для электродов 2-го рода типа: Pt, H2 (P1) | HCl | Pt, H2 (P2), уравнение (2.15) преобразуется в уравнение

 

(Р1/Р2), (2.16)

 

где P1 и P2 - давления водорода, P1 > P2.

Для амальгамного элемента: Hg [Cd] (a1) | Cd2+ | Hg [Cd] (a2), (a2 > a1), уравнение Нернста имеет вид

 

(а1/а2), (2.17)

 

где a1 и a2 ─ активности металлического кадмия в амальгаме. Для элемента типа: Cd(ж) (a1 = 1) | Cd в расплаве солей | Cd в расплаве Cd – Sn (a2) уравнение (2.17) принимает вид

 

, (2.18)


где a2 ─ активность кадмия в расплаве Cd – Sn.

Расчет ЭДС концентрационной цепи (например, серебряной, Ag | AgNO3 (а1) ║ AgNO3 (а2) | Ag,) производится по формуле

Е = 2. 0,059. l, . lg(а1/а2) /(l∞, +l∞, ) (2.19)

 

где λ,Ag+ и λ∞, - подвижности аниона и катиона.

Термодинамические функции ΔG, ΔS, ΔH для электрохимических реакций рассчитывают по уравнениям:

 

ΔG = - nEF, (2.20)

, (2.21)

, (2.22)

, (2.23)

, (2.24)

 

где n – число электронов, участвующих в реакции; F – число Фарадея, Кл; E – ЭДС, В.

 

Задачи с решениями

электролит проводимость потенциал кинетика

1. Гальванический элемент состоит из металлического цинка, погруженного в 0,1 М раствор нитрата цинка, и металлического свинца, погруженного в 0,02 М раствор нитрата свинца. Вычислите ЭДС элемента.

Решение. Чтобы определить ЭДС элемента, необходимо вычислить электродные потенциалы. Для этого из табл. [8], берем значения стандартных электродных потенциалов систем Zn2+|Zn (-0,76 В) и Pb2+|Pb (-0,13 В), а затем рассчитываем значение φ по уравнению Нернста: φZn/Zn2+ = -0,76+(0,059.lg0,1)/2 = =-0,79 В, φPb/Pb2+=-0,13+(0,059.lg0,02)/2=-0,18 В. Находим ЭДС элемента: Е = φ Pb/Pb2+ – φ Zn/Zn 2+ = -0,18+0,79 = 0,61.

Ответ:0,61 В.

2. Вычислите потенциал серебряного электрода в насыщенном растворе AgBr (ПР = 6.10-13), содержащем, кроме того, 0,1 моль/л бромида калия.

Решение. Запишем уравнение Нернста для системы Ag+|Ag: φ= φ0 + 0,059.lg[Ag+]. Значение φ0 для этой системы составляет 0,8 В (табл. [8]). Поскольку бромид калия полностью диссоциирован, то [Br-]=0,1 моль/л. Отсюда находим концентрацию ионов серебра: [Ag+] = ПРAgBr /[Br-] = 6.10-13/0,1 = = 6.10-12 моль/л. Теперь подставляем значения φ0 и [Ag+] в уравнение электродного потенциала: φ = 0,8 + 0,059.lg(6∙10-12) = = 0,14.

Ответ: 0,14 В.

3. Вычислите активность ионов Н+ в растворе, в котором потенциал водородного электрода равен 82 мВ.

Решение. Из уравнения φ = -0,059рН находим: рН = = 0,082/0,059 = 1,39. Следовательно, аН+ = 0,041.

Ответ: аН+ = 0,041 моль/л.

4. Рассчитайте стандартный электродный потенциал пары Cu2+|Cu+ по следующим данным: φ0Cu2+|Cu = 0,337 В, φ0Cu+|Cu = = 0,521 В.

Решение. Для реакции Cu2+ + 2е = Cu, ΔG0 = -nF Е0 = = −2.96485.0,337 = −65031 Дж.моль-1. Для реакции Cu+ + е = Cu, ΔG0 = −96485.0,521 = −50269 Дж.моль-1. Вычитая из первой реакции вторую, получим Cu2+ + е = Cu+ и, следовательно, ΔG0 = = −14762 Дж.моль-1, откуда Е0 = 0,153.

Ответ: Е0 = 0,153 В.

5. ΔН реакции Pb + Hg2Cl2 = PbCl2 + 2Hg, протекающей в гальваническом элементе, равно −94,2 кДж/моль при 298,2 К. ЭДС этого элемента возрастает на 1,45.10-4 В при повышении температуры на 1 К. Рассчитайте ЭДС элемента и ΔS при 298,2 К.

Решение. = 2,96485.1,45.10-4 = = 28,0. ΔG = ΔНТΔS = nFE, откуда E = − (ΔН - ТΔS)/nF = = 0,5314.

Ответ: ΔS = 28,0 Дж/(моль.К); E = 0,5314 В.

6. Рассчитайте константу равновесия реакции Cd2+ + Zn = = Zn2+ + Cd, если φ0Cd2+/Cd = -403 В; φ0Zn2+/Zn = -0,763 В.

Р е ш е н и е. Константу равновесия вычисляем по уравнению: 02 – φ01).n/0,0592. После подстановки данных получим  = 12,16. Откуда К = 1,45.1012.

Ответ: К = 1,45.1012.

 



2020-02-03 191 Обсуждений (0)
Необходимые исходные сведения и основные уравнения 0.00 из 5.00 0 оценок









Обсуждение в статье: Необходимые исходные сведения и основные уравнения

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...
Личность ребенка как объект и субъект в образовательной технологии: В настоящее время в России идет становление новой системы образования, ориентированного на вхождение...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (191)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.006 сек.)