Мегаобучалка Главная | О нас | Обратная связь


Селективные и комплексообразующие иониты.



2020-02-04 175 Обсуждений (0)
Селективные и комплексообразующие иониты. 0.00 из 5.00 0 оценок




Идея синтеза ионитов, селективных к определенным ионам или группам ионов, возникла давно. С этой целью пытались вводить в ионит в процессе синтеза вещества, способные к комплексообразованию, присоединять к матрице полимера в качестве функциональных групп специфические реактивы на определенные ионы: диметилглиоксим, дипикриламин, меркаптаны, N-метилглюкамид и т. п. Однако часто их селективные свойства значительно ухудшаются при введении в матрицу.

Другое направление синтеза комплексообразующих ионитов — включение в матрицу комплексонов, способных к образованию циклических внутрикомплексных соединений (хелатов) и прежде всего иминодиуксусной кислоты и ее производных. Таковы иониты с присоединенными группами оксихинолина, иминодиуксусной, этилендиаминтетрауксусной, этнлендиаминдипропионовой, бензилиминодиуксусной, саркозиновой и аминоэтилфосфоновой кислот.

Важное свойство этих ионитов – возможность управления их селективностью путем изменения внешних условий, в частности рН, поскольку. Как правило, селективные функциональные группы обладают свойствами кислот или оснований.

Многие комплексообразующие смолы имеют плохие кинетические свойства из-за малой диссоциации групп, а следовательно, и плохого набухания.

Чем селективнее сорбируется ион, тем труднее извлечь его из ионита. Тем больше время и затраты реактивов необходимы на десорбцию. В связи с этим важны работы по модификации комплексообразующих ионитов – синтезу ионитов с развитой поверхностью (пористых), ионитов, содержащих кроме специфических функциональных групп полярные группы, либо неспецифические, но легкие гидратируемые функциональные группы (например, сульфогруппы). На комплексообразующих ионитах значительно существеннее явление сверхэквивалентного обмена вследствие слабой диссоциации комплексов.    

При сорбции ионов комплексообразующими ионитами функциональные группы часто далеко не полностью насыщают координационные связи иона-комплексообразователя. Оставшиеся координационный связи насыщаются за счет дополнительного связывания лигандов молекул или ионов из внешнего раствора.

Если в растворе присутствуют разные лиганды, то они конкурируют друг с другом за место в координационной сфере сортированного ионитом иона-комплексообразователя, обмениваются друг с другом (лиганд-обмен). В качестве катионов-комплексообразователей обычно применяются Ag+, Cu2+, Zn2+, Ni2+, Cd2+, Fe3+ и др. Например, сорбированные ионитом ионы меди в аммиачной среде могут обменивать молекулы аммиака на пиридин, тиомочевину, 1,3-диаминопропенол и т.д. Если лиганд — ион, то при лиганд-отмене катионит работает как анионит (и наоборот). В случае нейтральных лигандов ионит работает как молекулярный сорбент при полном его насыщении в процессе конкурентной сорбции молекул.

Законы лиганд-обмена сходны с ионным обменом. Так, при обмене лигандов, занимающих разное число мест в координационной сфере, наблюдается концентрационно-валентный эффект — увеличение сорбции полидентатного лиганда при разбавлении внешнего раствора.

Лиганд обмен возможен не только на комплексообразующих, но и на обычных ионитах (в том числе на сульфокатионитах), насыщенных комплексными ионами. Однако здесь гораздо существеннее роль ионного состава внешнего раствора, изменение которого приводит к десорбции этих ионов. При их специфической сорбции ионитом-комплексообразователем это явление менее существенно. Поэтому лиганд-обмену на комплексообразующих смолах не препятствует значительная концентрация солей во внешнем растворе.

Основанная на лиганд-обмене лиганд-хроматография – тонкий метод, пригодный для весьма сложных разделений, например для разделение аминов, аминокислот, пептидов, производных нуклеиновых кислот, эфиров непредельных кислот, амфетаминов и дикетонов [15] .

В настоящее время большое внимание уделяется повышению селективности ионообменных процессов за счет использования селективных ионообменников. Последние получают введением соответствующих функциональных групп (производных органических реагентов) в полимерную матрицу. Функциональные группы этих ионообменников обладают способностью образовывать комплексы или хелаты с некоторыми ионами и благодаря этому (при соответствующей обработке анализируемого раствора) селективно поглощают один вид или ограниченную группу ионов из сложных смесей ионов.

Например, смолы, содержащие группы – N(CH2COOH)2, селективно поглощают следовые количества тяжелых металлов в присутствии больших количеств ионов щелочно-земельных металлов. Ионообменник, содержащий группы – РО(ОН)2, в кислой среде селективно поглощает скандий – редкоземельные элементы.

Другую группу ионообменников, проявляющих повышенную селективность к некоторым ионам, образуют неорганические сорбенты. Недостатками этих ионообменников являются низкая устойчивость большинства из них в щелочных растворах, склонность к пептизации, малая обменная емкость, а также трудности, связанные с получением их в форме, удобной для работы в динамическом режиме [16].

 

 

  

Жидкие иониты

Одним из наиболее совершенных методов разделения вещества является экстракция — избирательное извлечение веществ из смесь при распределении растворенных веществ между двумя несмешивающимися друг с другом растворителями (как правило, между водой и органическим растворителем). Экстрагентами часто являются неполярные органические растворители. Обычно они слабо извлекают из внешнего раствора ионизированные соединения. Однако извлечение ионов можно резко усилить, растворив вещество с молекулами двоякой — гидрофобно-гидрофильной (дифильной) — природы. Они обладают способной к диссоциации функциональной группой (гидрофильной головкой) и одним или несколькими гидрофобными неполярными хвостами, достаточно длинными для того, чтобы «затащить» полярную группу в неполярный растворитель. Из неполярного растворителя эти вещества в водную фазу практически не переходят. В органической фазе они в некоторой степени сохраняют способность к диссоциации и могут обмениваться ионами с внешним водным раствором. Диссоциация подобных растворенных веществ в органическом растворителе существенно усиливается при контакте с водой, так как полярная группа собирает вокруг себя молекулы воды, в некотором количестве проникающие в органической растворитель, «затаскивая» воду в растворитель.

Такие смешанные экстрагенты называют жидкими ионитами, так как происходящие при экстракции ими ионов явления весьма сходны с ионным обменом на твердых ионитах.

Среди жидких ионитов также есть катиониты и аниониты. Анионитами, например, являются растворы четвертичных алкиламмониевых оснований и их солей (соли тетраоктиламмония, метилтрилауриламмония и т.д.),длинноцепных аминов (триоктиламина, трилаурнламина). Катиониты — растворы фосфорорганических кислот 1ди-2-этилгексилфосфорпая кислота), жирных кислот и их солей, алкилсульфокислот (динонилнафталинсульфокислота) и т. п.

Жидкие иониты расширяют пределы экстракционного метода, вовлекая в него ионообменные процессы, а возможности метода ионного обмена увеличиваются благодаря новым ионитам с иными физическими, термодинамическими и кинетическими свойствами.

Жидкие иониты особо интересны для теории ионного обмена. В самом деле, здесь отсутствуют такие влияющие на ионный обмен факторы, как сшивка полимерных цепей, да и сами цепи значительно короче. В отличие от твердых, жидкие иониты химически и физически однородны. Появляется возможность свободно изменять в широких пределах емкость обмена, диэлектрическую постоянную и другие свойства, влияющие на селективность ионного обмена.

Жидкие иониты значительно проще исследовать физическими и физико-химическими методами; легко, например, измерить поверхностное натяжение (в том числе и поверхности раздела двух растворителей), электродные потенциалы и активности ионов.

Следует помнить, что возможны и новые эффекты, а эффекты, наблюдающиеся у обычных ионитов, могут проявляться в существенно иной степени.

Жидкие иониты способны к обмену обычных и комплексных анионов. Так, для 0,1н. раствора темраоктиламмонийбромида (соль сильного основания) в толуоле установлен ряд:

 

OH-<F-<СН3СОО- <НСО3-<НSО4- <Сl- <

< Вr- < С6Н5СОО- < NО3- < I- < СlO4-

 

Как и для анионитов, здесь можно предположить существенное влияние различной гидратации ионов в обеих фазах на селективность обмена. Растворы солей четвертичных аммониевых оснований в керосине характеризуются следующим рядом селективности для комплексов ионов-комплексообразователей:

 

Ni2+ < Mn2+< Со2+ < Сu2+ < РЬ2+ < Zn2+< Cd2+

 

Недостаточно ясно, отражает ли этот ряд только собственно ионообменные явления, либо на него влияет и неполное связывание ионов в комплексы. Известно, например, что хлоридные комплексы металлов легко диссоциируют по реакции типа:

 

[ZnCl4]2- = Zn2+ + 4Cl-

 

при концентрации Cl- в растворе < 0,4н и, следовательно, уже не участвуют в анионном обмене.

Жидкие аниониты способны к экстракции кислот из водных растворов. Этот процесс можно представить и как ионный обмен. Например, сорбцию кислоты триоктиламином можно записать как в виде

 

R3N + Н+ + Сl- = R3NHCl

так и в виде:

R3N · HOH+Н++ Cl- = R3N · HCl + Н2О

 

Исследование жидких ионитов методами ионного обмена, несомненно, должно привести к важным теоретическим и практическим результатам.

Жидкие иониты широко применяются в металлургии благородных металлов, кобальта, никеля, меди при очистке сточных вод, переработке продуктов деления урана и плутония и в других радиохимических процессах. Как правило, использование, особенно в крупнотоннажном производстве, даже весьма экзотических экстрагентов, при усовершенствовании технологии их синтеза оказывается экономически выгодным.

Жидкие иониты применяют в аналитической химии для разделения ионов и в качестве мембран ионселективных электродов. В перспективе возможно их применение в виде селективных мембран для разделения ионов методом мембранной технологии [17].

 



2020-02-04 175 Обсуждений (0)
Селективные и комплексообразующие иониты. 0.00 из 5.00 0 оценок









Обсуждение в статье: Селективные и комплексообразующие иониты.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как построить свою речь (словесное оформление): При подготовке публичного выступления перед оратором возникает вопрос, как лучше словесно оформить свою...
Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (175)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)