Мегаобучалка Главная | О нас | Обратная связь


Основные характеристки ионообменников.



2020-02-04 183 Обсуждений (0)
Основные характеристки ионообменников. 0.00 из 5.00 0 оценок




а) Сильнокислотные катионообменники.

Выпускают два типа ионообменников, содержащих группы — SO3H, на стирол-дивинилбензольной и фенолформальдегидной матрицах. Группы SO3H связаны с бензольным ядром непосредственно или через метиленовую группу. По степени ионизации ионогенных групп ионообменники сравнимы с сильными минеральными кислотами. Группы — SO3H, связанные непосредственно с бензольным кольцом, диссоциируют легче, чем группы — СН2SO3Н.

При контакте ионообменников в Н-форме с растворами нейтральных полей ионы Н+ переходят в раствор, а ионообмениики превращаются в соответствующие солевые формы. Химические реакции ионообменников подобны реакциям серной кислоты. Обменная емкость смол практически не зависит от рН раствора, ионообменники могут быть использованы в кислых, нейтральных и щелочных растворах.

Селективность групп — SO3H повышается с увеличением атомного номера, валентности и степени ионизации обмениваемых ионов и понижается с увеличением ионного радиуса гидратированных ионов. Как правило, селективность уменьшается в рядах (Dowex 50-X8):

 

Ag+ > Cs+ > Rb+ > К+ > NH+ > Н+> Li+;

Ba2+ > Sr2+ > Сa2+> Mg2+ > Be2+;

Ва2+>РЬ2+>Sr2+>Са2+>Ni2+=Cu2+>Cd2+>Co2+>Zn2+=Mg2+>Mn2+>Be2+ >UO22-> Hg2+; La3+ > Се3+ > Cr3+;

Th4+(NO3-)4>Fe3+>Al3+>Ва2+>Tl+(SO42-)=Pb2+>Sr2+>Са2+>СО32->Ni2+=Cu2+>Zn2+= Mg2+>UO22-(NO3-)2=Mn2+>Ag+>Cs+>Ве2+(SO42-)=Rb+>Cd2+>NH4++>Na++>Li+

 

Эти ряды селективности справедливы для разбавленных растворов (приблизительно 0,1 моль/л хлоридов, если не указаны другие условия). В концентрированных растворах однозарядные ионы поглощаются лучше, чем многозарядные. 

б) Среднекислотные катионообменники.

В настоящее время выпускают ионообменники, содержащие группы — РО(ОН)2 или – ОРО(ОН)2, на различных полимерных матрицах. Химические свойства ионообменников подобны свойствам фосфористой или фосфорной кислот. По способности к диссоциации ионогенных групп смолы в Н-форме занимают промежуточное положение между сильнокислотными и слабокислотными катионообменниками.

Обменная емкость ионообменников зависит от рН внешнего раствора. Большая часть одно- и двухзарядных катионов наиболее эффективно поглощается при рН > 5. На селективность ионогенных групп большое влияние оказывает природа сорбируемого иона и рН раствора:

—РО(ОН)2: Pb2+> Cu2+ > Zn2+ > Cd2+ > Mn2+ > Со2+ > Ni2+;

диаллилфосфат: Н+ > Ag+ > Cs+ > Rb+ > K+ > Na+ > Li+ (в кислой среде);

— РО(ОН)2: Cs+ > RЬ+ > К+ > Na+ > Li+ (pH 6,7 — 8,5)

                 Cs+ > Rb+ > К+ > Li+ > Na+ (рН 10,0);

                 Li+ > Na+ ≥ RЬ+ ≥ Cs+ > К+ (рН 12,6);

— РО(ОН)2 :Th4+ > U4+ > UO22-> Fe3+ > РЗЭ > Н+ > Cu2+ > Cu2+ > Cd2+ > Mn2+ >  

                  Co2+ > Ni2+ > Са2+> Mg2+> Sr2+ > Ва2+> Na+

 

Для полного превращения ионообменников в Н-форму из форм тех ионов, которые располагаются в ряду селективности после ионов Н+, необходим небольшой (по сравнению со стехиометрией) избыток сильной минеральной кислотой. Для других ионных форм требуется значительно больший избыток кислоты. Второй путь превращения смолы в Н-форму — предварительное элюирование катионов подходящим комплексообразующим веществом.

в) Слабокислотные катионообменники.

Выпускают монофункциональные ионообменники, содержание группы -CОOH, на основе сополимеров акриловой и метакриловой кислот с дивинилбензолом и ионообменники с группам -СООН и -ОН, полученные поликонденсацией фенолов с резорциловой кислотой. Ионообменники в Н-форме не выделяют ионы Н+ при контакте с растворами нейтральных солей; по степени ионизации соответствуют уксусной кислоте.

Обменная емкость ионообменников сильно зависит от рН раствора. Наиболее эффективная область рН находится в пределах рН 6 — 14.

Характерным свойством ионообменников являются высокая селективность к ионам H+ и относительно высокое сродство к ионам щелочноземельных металлов. Ряды селективности для ионов металлов имеют обратный порядок по сравнению с сильнокислотными ионообменниками.

Ряд селективности при рН 7: Mg2+ < Са2+ < Ni2+ < Со2+ < Cu2+;

г) Сильноосновные анионообменники.

Выпускают ионообменники, содержащие функциональные группы – N+(СН3)3Сl (тип I), — N+(СН3)2С2Н4ОН·Cl (тип II) или пиридиновые группы, преимущественно на основе сополимеров стирол-ДВБ. Ионообменники в ОН-форме вытесняют из растворов нейтральных солей анионы; в результате этого обмена ионообменники превращаются в соответствующие солевые формы, а в растворе образуются гидроксиды. По степени ионизации ионогенных групп ионообменники сравнимы с гидроксидами щелочных металлов. Ионообменники в ОН-форме поглощают даже слабодиссоциированные кислоты (борную, кремневую).

д) Среднеосновные анионообменники.

    Ионообменники содержат как сильноосновные, так и слабоосновные ионогенные группы (преимущественно группы третичных аминов). Регенерированные раствором гидроксида натрия, ионообменники вытесняют анионы из растворов нейтральных солей и сорбируют слабые кислоты пропорционально содержанию сильноосновных групп. После регенерации растворами карбоната натрия или гидроксида аммония ионообменники ведут себя как слабоосновные.

ж) Слабоосновные анионообменники.

Полимерной основой ионообменников, содержащих ионогенные группы – NH3, – NHR, – NR1R2 (первичные или вторичные амины), являются стирол-дивинилбензольные, полиамин-эпихлоргидринные и фенолформальдегидные матрицы. По степени ионизации ионогенных групп ионообменники сравнимы с гидроксидом аммония.

Аминогруппы ионообменников склонны к образованию прочных комплексов с Ag+, Cu+ и другими катионами.

Сродство анионов к ионообменникам уменьшается в ряду ОН- > SO42- > СгO42->цитрат >тартрат >NO3->AsO42->РО43->МoO42- >СН3СОО->I- =Вг->Cl- >F- [16].

 

Ионообменные процессы

Для того чтобы начался ионообменный процесс, необходимо ионообменную смолу привести в контакт с раствором, содержащим способные к обмену ионы. Существуют два метода осуществления контакта ионообменника ионами в растворе: статический (встряхивание) и динамический (колоночный).

Статический метод: Ионообменник перемешивают или встряхивают с раствором в подходящем сосуде. После достижения равновесия между ионообменником и ионами и растворе фазы разделяют фильтрованием, декантацией или центрифугированием и анализируют на содержание в них ионов. Количественное поглощение ионов из раствора может быть достигнуто при большом избытке ионообменной смолы (одностадийный статический процесс) или последовательным прибавлением небольших количеств смолы в раствор. После установления равновесия каждая порция смолы отделяется от раствора. Этот метод, называемый многостадийным (каскадным) статическим процессом, является лабораторным, его применение ограничено вследствие большой затраты времени и возможности экспериментальных ошибок.

Многостадийный процесс целесообразно использовать при анализе систем, в которых в результате ионного обмена выделяются газы, а также в тех особых случаях, когда необходимо сдвинуть равновесие в сторону ионообменного процесса. Примерами таких процессов служат реакции нейтрализации, образования устойчивых комплексов и нерастворимых соединены, превращения нерастворимых веществ в растворимые формы. Например, барий может быть переведен в раствор из нерастворимого сульфата

бария

BaSO4 + 2RSO3Na = (RSO3)2Ba + Na2SO4

 

Смолу промывают водой и элюируют ионы бария 3 — 4М соляной кислотой. Процесс проводят в присутствии большого избытка смолы при повышенной температуре. Аналогичную методику используют при анализе сульфатов свинца, стронция или кальция, хлорида свинца, нерастворимых фосфатов двухвалентных металлов и т. п.

Одностадийный статический процесс иногда применяют в качественном анализе: ионы концентрируют на белой или слабоокрашенной смоле и выполняют цветную реакцию на соответствующий ион непосредственно в фазе смолы.

Одной из наиболее важных областей применения статического метода является определение различных физико-химических параметров: структуры, устойчивости комплексов, коэффициентов селективности, равновесных характеристик для динамических опытов.

Динамический метод. Ионообменную смолу (набухшую в воде или подходящем растворителе) в виде гомогенной смеси с раствором помешают а вертикальную колонку и пропускают анализируемый раствор. Другие методы пропускания раствора через колонку (противоточный) редко применяют в аналитической практике. Проведение ионообменных процессов в колонках обеспечивает возможность количественного обмена ионов из раствора и разделение смесей с максимальной эффективностью.

Общая схема ионообменного процесса в колонках включает стадии сорбции, промывание соответствующим растворителем или раствором (чаше всего водой), регенерацию (элюирование сорбированных ионов). Представляют интерес особые случаи применения этих операций в аналитической химии.

а) Селективная сорбция. Этот метод основан на выборе подходящих условий сорбции для одного элемента или для небольшой группы элементов, присутствующих в смеси. Для удержания нежелательных компонентов смеси в растворе часто применяют вещества, которые образуют с мешающими элементами достаточно прочные несорбируемые комплексы.

Например, для превращения кадмия (в смеси Zn - Cd) и железа в несорбируемые сильнокислотными катионообменниками комплексы вводят иодиды и цианиды соответственно; часто в качестве комплексообразующих веществ используют такие комплексоны, как этилендиаминтетрауксусная кислота (ЭДТА), этиленгликольтетрауксусная кислота (ЭГТА) и др.

Метод селективной сорбции применяется также при разделении элементов на анионообменниках. Например, из растворов соляной кислоты, содержащей смесь элементов, при соответствующей концентрации кислоты на смоле может удерживаться только один ион в то время как другие ионы проходят через колонку (отделение Fe от Al, Co от Ni и т.п.).

б) Селективное элюирование. При селективном элюировании наблюдается картина, обратная селективной сорбции. Задача заключается в выборе условий, при которых один тип ионов десорбируется, а другие прочно удерживаются смолой. Процесс разделения ускоряется при использовании коротких колонок.

Процесс разделения в методе селективного элюирования основаны, как правило, на различиях в константах устойчивости разделяемых ионов. Типичным примером успешного применения метода селективного элюирования является разделения смеси Ni – Mn – Co – Cu – Fe – Zn элюированием соляной кислотой (с анионообмеников).

Сочетание селективной сорбции и селективного элиюрования значительно упрощает процесс разделения сложных смесей [18].

Хроматографический метод. Разделение сложных смесей на индивидуальные компоненты возможно только при наличии высокоэффективных методов. Хроматографические колоночные методы подразделяются на три основных вида: фронтальный вытеснительный и элюентный анализ. Фронтальный и вытеснительный виды хроматографического анализа имеют ограниченное значение при разделении смесей неорганических ионов, так как не позволяют количественно разделить смеси на индивидуальные компоненты.

Метод элюентной хроматографии основан на поглощении анализируемой смеси ионов в верхней части колонки в виде тонкого слоя и разделения с помощью соответствующего элюирующего раствора при продвижении его по колонке сверху вниз. В процессе перемешивания раствора состав поглощенной пробы непрерывно изменяется: ионы, имеющие более низкое сродство к ионообменнику – медленнее. После пропускания достаточного количества элюента индивидуальные компоненты анализируемой смеси распределяются вдоль ионообменной колонки в виде отдельных зон. 

В ионообменных процессах могут быть использовать не только гранульные ионообменники, но также материалы в форме бумаги, тонких пластин или мембран. Ионообменную бумагу получают введением тонкодисперсных частиц смолы в бумажную пульпу или непосредственно в слое бумаги.

Практические методы работы с ионообменными материалами в форме бумаги, тонких пластин и мембран аналогичны приемам, используемым в бумажной и тонкослойной хроматографии и в электрохимических методах разделения [20].

 



2020-02-04 183 Обсуждений (0)
Основные характеристки ионообменников. 0.00 из 5.00 0 оценок









Обсуждение в статье: Основные характеристки ионообменников.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему люди поддаются рекламе?: Только не надо искать ответы в качестве или количестве рекламы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (183)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)