Глава 4. ФИЗИОЛОГИЯ И БИОХИМИЯ МИКРООРГАНИЗМОВ
Физиологические и биохимические особенности микроорганизмов положены в основу систематики. Они важны для изучения механизмов патогенного действия, культивирования, дифференцировки и идентификации отдельных микроорганизмов, а для разработки биотехнологии производства вакцин, антибиотиков и других биологически активных продуктов. Физиология изучает жизненные функции микроорганизмов: питание, дыхание, рост и размножение. В основе физиологических функций лежит непрерывный обмен веществ (метаболизм). Сущность обмена веществ составляют два противоположных и вместе с тем взаимосвязанных процесса: ассимиляция (анаболизм) и диссимиляция (катаболизм). В процессе ассимиляции происходит усвоение питательных веществ и использование их для синтеза клеточных структур. При процессах диссимиляции питательные вещества разлагаются и окисляются, при этом выделяется энергия, необходимая для жизни микробной клетки. В результате распада питательных веществ происходит расщепление сложных органических соединений на более простые, низкомолекулярные. Часть из них выводится из клетки, а другие снова используются клеткой для биосинтетических реакций и включаются в процессы ассимиляции. Все процессы синтеза и распада питательных веществ совершаются с участием ферментов. Особенностью микроорганизмов является интенсивный обмен веществ. За сутки при благоприятных условиях одна микробная клетка может переработать такое количество питательных веществ, которое в 30—40 раз больше ее массы.
ХИМИЧЕСКИЙ СОСТАВ БАКТЕРИЙ Для понимания процессов обмена веществ необходимо знать химический состав микроорганизмов. Микроорганизмы содержат те же химические вещества, что и клетки всех живых организмов. Важнейшими элементами являются органогены (углерод, водород, кислород, азот), которые используются для построения сложных органических веществ: белков, углеводов и липидов. Микроорганизмы содержат также зольные или минеральные элементы. Большая часть их химически связана с органическими веществами, остальные присутствуют в клетке в виде солей.
Рис.27 Химический состав бактерий.
В количественном отношении самым значительным компонентом клетки является вода, которая составляет 75—85% на долю сухого вещества, которое состоит из органических (белки, нуклеиновые кислоты, углеводы, липиды) и минеральных соединений, приходится 15—25%. Вода. Значение воды в жизнедеятельности клетки велико. Все вещества поступают в клетку с водой, с ней же удаляются продукты обмена. Вода в микробной клетке находится в свободном состоянии как самостоятельное соединение, но большая часть ее связана с различными химическими компонентами клетки (белками, углеводами, липидами) и входит в состав клеточных структур. Свободная вода принимает участие, а химических реакциях, протекающих в клетке, является растворителем различных химических соединений, а также служит дисперсной средой для коллоидов. Содержание свободной воды в клетке может изменяться в зависимости от условий внешней среды, физиологического состояния клетки, ее возраста. Так, у споровых форм бактерий значительно меньше воды, чем у вегетативных клеток. Наибольшее количество воды отмечается у капсульных бактерий. Белки (50—80% сухого вещества) определяют важнейшие биологические свойства микроорганизмов. Это простые белки—протеины и сложные — протеиды. Большое значение в жизнедеятельности клетки имеют нуклеопротеиды — соединение белка с нуклеиновыми кислотами (ДНК и РНК). Кроме нуклеопротеидов, в микробной клетке содержатся в незначительных количествах липопротеиды, гликопротеиды, хромопротеиды. Белки распределены в цитоплазме, нуклеоиде, они входят в состав структуры клеточной стенки. К белкам принадлежат ферменты, многие токсины (яды микроорганизмов).
Рис. 28 Содержимое бактериальной клетки.
Видовая специфичность микроорганизмов зависит от количественного и качественного состава белковых веществ. Нуклеиновые кислоты в микробной клетке выполняют те же функции, что и в клетках животного происхождения. ДНК содержится в ядре (нуклеоиде) и обусловливает генетические свойства микроорганизмов. РНК принимает участие в биосинтезе клеточных белков, содержится в ядре и цитоплазме. Общее количество нуклеиновых кислот колеблется от 10 до 30% сухого вещества микробной клетки и зависит от ее вида и возраста. Углеводы (12—18% сухого вещества) используются микробной клеткой в качестве источника энергии и углерода. Из них состоят многие структурные компоненты клетки (клеточная оболочка, капсула и другие). Углеводы входят также в состав тейхоевой кислоты, характерной для грамположительных бактерий. Клетки микроорганизмов содержат простые (моно- и дисахариды) и высокомолекулярные (полисахариды) углеводы. У ряда бактерий могут быть включения, по химическому составу напоминающие гликоген и крахмал, они играют роль запасных питательных веществ в клетке. Углеводный состав различен у разных видов микроорганизмов и зависит от их возраста и условий развития. Липиды (0,2—-40% сухого веществ) являются необходимыми компонентами цитоплазматической мембраны и клеточной стенки, они участвуют в энергетическом обмене. В некоторых микробных клетках липиды выполняют роль запасных веществ. Липиды состоят в основном из нейтральных жиров, жирных кислот, фосфолипидов. Общее количество их зависит от возраста и вида микроорганизма. Например, у микобактерий туберкулеза количество липидов достигает 40%, что обусловливает устойчивость этих бактерий к воздействию факторов внешней среды. В клетках микроорганизмов липиды могут быть связаны с углеводами и белками, составляя сложный комплекс, определяющий токсические свойства микроорганизмов. Минеральные вещества — фосфор, натрий, калий, магний, сера, железо, хлор и другие — в среднем составляют —14% сухого вещества. Фосфор входит в состав нуклеиновых кислот, фосфолипидов, многих ферментов, а также АТФ (аденозинтрифосфорной кислоты), которая является аккумулятором энергии в клетке. Натрий участвует в поддержании осмотического давления в клетке. Железо содержится в дыхательных ферментах. Магний входит в состав рибонуклеата магния, который локализован на поверхности грамположительных бактерий. Для развития микроорганизмов необходимы микроэлементы, содержащиеся в клетке в очень малых количествах. К ним относят кобальт, марганец, медь, хром, цинк, молибден и многие другие. Микроэлементы участвуют в синтезе некоторых ферментов и активируют их. Соотношение отдельных химических элементов в микробной клетке может колебаться в зависимости от вида микроорганизма, состава питательной среды, характера обмена и условий существования во внешней среде. ПИТАНИЕ БАКТЕРИЙ Всем микроорганизмам для осуществления процессов питания, дыхания, размножения необходимы питательные вещества. В качестве питательных веществ и источников энергии микроорганизмы используют различные органические и неорганические соединения, для нормальной жизнедеятельности им требуются также микроэлементы и факторы роста. Процесс питания микроорганизмов имеет ряд особенностей: во-первых, поступление питательных веществ происходит через всю поверхность клетки; во-вторых, микробная клетка обладает исключительной быстротой метаболических реакций; в-третьих, микроорганизмы способны довольно быстро адаптироваться к изменяющимся условиям среды обитания. Разнообразие условий существования микроорганизмов обусловливает различные типы питания. Типы питания определяются по характеру усвоения углерода и азота. Источником других органогенов — водорода и кислорода служит вода. Вода необходима микроорганизмам и для растворения питательных веществ, так как они могут проникать в клетку только в растворенном виде. По усвоению углерода микроорганизмы делят на два типа: автотрофы и гетеротрофы Автотрофы (от греч. autos —сам, trophe — питание) способны синтезировать сложные органические вещества из простых неорганических соединений. Они могут использовать в качестве источника углерода углекислоту и другие неорганические соединения углерода. Автотрофами являются многие почвенные бактерии (нитрифицирующие, серобактерии и др.). Гетеротрофы (от греч. heteros —другой, trophe — питание) для своего роста и развития нуждаются в готовых органических соединениях. Они могут усваивать углерод из углеводов (чаще всего глюкозы), многоатомных спиртов, органических кислот, аминокислот и других органических веществ. Гетеротрофы представляют обширную группу микроорганизмов, среди которых различают сапрофитов и паразитов. Сапрофиты (от греч. sapros — гнилой, phyton — растение) получают готовые органические соединения от отмерших организмов. Они играют важную роль в разложении мертвых органических остатков, например, бактерии гниения и др.
Рис.29. Плесневый гриб-сапрофит.
Паразиты (от греч. parasitos — нахлебник) живут и размножаются за счет органических веществ живой клетки растений, животных или человека. К таким микроорганизмам относятся риккетсии, вирусы и некоторые простейшие. По способности усваивать азот микроорганизмы делятся также на две группы: аминоавтотрофы и аминогетеротрофы. Аминоавтотрофы для синтеза белка клетки используют молекулярный азот воздуха (клубеньковые бактерии, азотобактер) или усваивают его из аммонийных солей. Аминогетеротрофы получают азот из органических соединений — аминокислот, сложных белков. К ним относят все патогенные микроорганизмы и большинство сапрофитов. По источникам энергии среди микроорганизмов различают фототрофы, использующие для биосинтетических реакций энергию солнечного света (пурпурные серобактерии) и хемотрофы, которые получают энергию за счет окисления неорганических веществ (нитрифицирующие бактерии и др.) и органических соединений (большинство бактерий, в том числе и патогенные для человека виды). Однако резкой границы между типами питания микробов провести нельзя, так как есть такие виды микроорганизмов, которые могут переходить от гетеротрофного типа питания к автотрофному, и наоборот. В настоящее время для характеристики типов питания введена новая терминология: гетеротрофы называют органотрофами, а автотрофы — литотрофами (от греч. litоs —камень), так как подобные микроорганизмы способны расти в чисто минеральной среде.
Факторы роста. Микроорганизмы для своего роста и размножения нуждаются в особых веществах, которые сами синтезировать не могут и должны получать их в готовом виде. Эти вещества называют факторами роста, и нужны они микробным клеткам в небольших количествах. К ним относят различные витамины, некоторые аминокислоты (необходимые для синтеза белка), пуриновые и пиримидиновые основания (идущие на построение нуклеиновых кислот) и др. Многие факторы роста входят в состав различных ферментов и играют роль катализаторов в биохимических процессах. Знание потребностей микроорганизмов в питательных веществах и факторах роста очень важно, в частности, для создания питательных сред, применяемых для их выращивания. Транспорт питательных веществ. Питательные вещества могут проникать в цитоплазму микробных клеток только в виде небольших молекул и в растворенном виде. Сложные органические вещества (белки, полисахариды и др.) предварительно подвергаются воздействию ферментов, выделяемых микробной клеткой, и после этого становятся доступными для использования. Транспорт питательных веществ в клетку и выход из нее продуктов метаболизма осуществляется, в основном, через цитоплазматическую мембрану. Питательные вещества проникают в клетку несколькими способами: 1. Пассивная диффузия, т. е. перемещение веществ через толщу мембраны, в результате чего выравниваются концентрация веществ и осмотическое давление по обе стороны оболочки. Таким путем могут проникать питательные вещества, когда концентрация в среде значительно превышает концентрацию веществ в клетке. 2. Облегченная диффузия — проникновение питательных веществ в клетку с помощью активного переноса их особыми молекулами-переносчиками, называемыми пермеазами. Это вещества ферментной природы, которые локализованы на цитоплазматической мембране и обладают специфичностью. Каждая пермеаза адсорбирует соответствующее питательное вещество на наружной стороне цитоплазматической мембраны, вступает с ним во временную связь и диффундирует комплексно через мембрану, отдавая на внутренней стороне ее транспортируемое вещество в цитоплазму. Этот процесс совершается без использования энергии, так как перемещение веществ происходит от более высокой концентрации к более 3. Активный транспорт питательных веществ осуществляется также с помощью пермеаз, но этот процесс требует затраты энергии. В этом случае питательное вещество может проникнуть в клетку, если концентрация его в клетке значительно превышает концентрацию в среде. 4. В ряде случаев транспортируемое вещество может подвергаться химической модификации, и такой способ переноса веществ получил название переноса радикалов или транслокации химических групп. По механизму передачи транспортируемого вещества этот процесс сходен с активным транспортом. Выход веществ из микробной клетки осуществляется или в виде пассивной диффузии, или в процессе облегченной диффузии с участием пермеаз.
ФЕРМЕНТЫ Ферменты — это вещества белковой природы, вырабатываемые живой клеткой. Они являются биологическими катализаторами и играют важную роль в обмене веществ микроорганизмов. Ферменты микробной клетки локализуются в основном в цитоплазме, некоторые содержатся в ядре и клеточной оболочке. Микроорганизмы могут синтезировать самые разнообразные ферменты, относящиеся к шести известным классам: оксиредуктазы, трансферазы, гидролазы лиазы, изомеразы, лигазы. Характерным свойством ферментов является специфичность действ и я, т. е. каждый фермент реагирует с определенным химическим соединением или катализирует одну или несколько близких химических реакций. Например, фермент лактаза расщепляет лактозу, мальтаза — мальтозу. Активность ферментов зависит от температуры среды, рН и других факторов. Для многих патогенных микроорганизмов оптимальное значение рН 7,2—-7,4, а оптимальная температура находится в пределах 37—50 °С. Ферменты микроорганизмов классифицируются на экзоферменты и эндоферменты. Экзоферменты, выделяясь во внешнюю среду, расщепляют макромолекулы питательных веществ до более простых соединений, которые могут быть усвоены микробной клеткой. Так, к экзоферментам относят гидролазы, вызывающие гидролиз белков, жиров, углеводов. В результате этих реакций белки расщепляются на аминокислоты и пептоны, жиры — на жирные кислоты и глицерин, углеводы (полисахариды)— на дисахариды и моносахариды. Распад белков вызывают ферменты протеазы, жиров — липазы, углеводов — карбогидразы. Эндоферменты участвуют в реакциях обмена веществ, происходящих внутри клетки. У микроорганизмов различают также конститутивные и индуктивные ферменты. Конститутивные ферменты постоянно находятся в микробной клетке независимо от условий существования. Это, в основном, ферменты клеточного обмена: протеазы, липазы, карбогидразы и др. Индуктивные (адаптивные) ферменты синтезируются в клетке под влиянием соответствующего субстрата, находящегося в питательной среде, и когда микроорганизм вынужден его усваивать. Таким образом, индуктивные ферменты позволяют микробной клетке приспособиться к изменившимся условиям существования. Наряду с ферментами обмена многие патогенные бактерии вырабатывают также ферменты агрессии, которые служат для преодоления естественных защитных барьеров макроорганизма и являются факторами патогенности. К таким ферментам относятся гиалуронидаза, дезоксирибонуклеаза, лецитовителаза и др. Например, гиалуронидаза расщепляет межклеточное вещество соединительной ткани (гиалуроновую кислоту) и тем самым способствует распространению возбудителя в макроорганизме. Выделение микроорганизмами различных ферментов определяет их биохимические свойства. Ферментный состав любого микроорганизма является достаточно постоянным признаком, а различные виды микроорганизмов довольно четко различаются по набору ферментов. Поэтому изучение ферментативного состава имеет важное значение для дифференциации и идентификации различных микроорганизмов. Практическое использование микробных ферментов. Издавна человек использовал ферментативную активность дрожжей в пивоварении и виноделии. Применение ферментов в пищевой промышленности позволяет значительно интенсифицировать технологический процесс, повысить выход и улучшить качество готовой продукции. Ферменты, выделенные из определенных видов микроскопических грибов, используются в процессе изготовления пшеничного теста, что позволяет увеличить объем, пористость выпеченного хлеба, улучшить его свежесть, аромат, вкус. Ферментные препараты некоторых микроорганизмов применяют для ускорения процессов выделения соков из плодов и ягод. С целью получения высококачественных кормов для сельскохозяйственных животных процессы микробного синтеза используются при силосовании зеленых трав; благодаря ферментативной активности дрожжей, размножающихся на отходах нефти (парафинах), получают белково-витаминные концентраты, которые являются ценным питательным веществом — их добавляют к грубым кормам для животных. Функциональная активность и скорость ферментативных реакций зависят от условий, в которых находится данный микроорганизм и прежде всего от температуры среды и ее рН. В медицинской промышленности с помощью ферментов микроорганизмов получают витамины, гормоны, алкалоиды. ДЫХАНИЕ БАКТЕРИЙ Дыхание (или биологическое окисление) микроорганизмов представляет собой совокупность биохимических процессов, в результате которых освобождается энергия, необходимая для жизнедеятельности микробных клеток. Все физиологические процессы, такие как движение, рост и размножение, образование спор и капсул, выработка токсинов, могут осуществляться при постоянном притоке энергии. Микроорганизмы добывают энергию за счет окисления различных химических соединений: углеводов (чаще глюкозы), спиртов, органических кислот, жиров и т. д. Сущность окисления состоит в том, что окисляемое вещество отдает электроны, а восстанавливаемое получает их. Пo типу дыхания все микроорганизмы разделяются на облигатные (строгие) аэробы, облигатные анаэробы и факультативные (необязательные) анаэробы. Облигатные аэробы (микобактерии туберкулеза и др.) живут и развиваются: при свободном доступе кислорода, т. е. реакции окисления осуществляются у них при участии молекулярного кислорода с высвобождением большого количества энергии. Существуют и микроаэрофилы, которые нуждаются в малых количествах кислорода (некоторые лептоспиры, бруцеллы). Облигатные анаэробы (клостридии столбняка, ботулизма и др.) способны жить и размножаться только в отсутствие свободного кислорода воздуха. Дыхание у анаэробов происходит путем ферментации субстрата с образованием небольшого количества энергии. Наличие свободного кислорода для облигатных анаэробов является губительным. Это связано с тем, что в присутствии кислорода конечным продуктом окисления органических соединений оказывается перекись водорода. А поскольку анаэробы не обладают способностью продуцировать фермент каталазу, расщепляющую перекись водорода, то она накапливается и оказывает токсическое действие на бактерии. Факультативные анаэробы могут размножаться как при наличии молекулярного кислорода, так и при отсутствии его. К ним относят большинство патогенных и сапрофитных бактерий.
Популярное: Почему стероиды повышают давление?: Основных причин три... Почему двоичная система счисления так распространена?: Каждая цифра должна быть как-то представлена на физическом носителе... Генезис конфликтологии как науки в древней Греции: Для уяснения предыстории конфликтологии существенное значение имеет обращение к античной... ©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (2320)
|
Почему 1285321 студент выбрали МегаОбучалку... Система поиска информации Мобильная версия сайта Удобная навигация Нет шокирующей рекламы |