Мегаобучалка Главная | О нас | Обратная связь


Равногранные тетраэдры



2020-02-03 536 Обсуждений (0)
Равногранные тетраэдры 0.00 из 5.00 0 оценок




Равногранным называется тетраэдр, все грани которого равны. Чтобы представить себе равногранный тетраэдр, возьмем произвольный остроугольный треугольник из бумаги, и будем сгибать его по средним линиям. Тогда три вершины сойдутся в одну точку, а половинки сторон сомкнутся, образуя боковые ребра тетраэдра.

 


(0) Грани конгруэнтны.

(1) Скрещивающиеся ребра попарно равны.

(2) Трехгранные углы равны.

(3) Противолежащие двугранные углы равны.

(4) Два плоских угла, опирающихся на одно ребро, равны.

(5) Сумма плоских углов при каждой вершине равна 180°.

(6) Развертка тетраэдра - треугольник или параллелограмм.

(7) Описанный параллелепипед прямоугольный.

(8) Тетраэдр имеет три оси симметрии.

(9) Общие перпендикуляры скрещивающихся ребер попарно

перпендикулярны.

(10) Средние линии попарно перпендикулярны.

(11) Периметры граней равны.

(12) Площади граней равны.

(13) Высоты тетраэдра равны.

(14) Отрезки, соединяющие вершины с центрами тяжести противоположных граней, равны.

(15) Радиусы описанных около граней окружностей равны.

(16) Центр тяжести тетраэдра совпадает с центром описанной сферы.

(17) Центр тяжести совпадает с центром вписанной сферы.

(18) Центр описанной сферы совпадает с центром вписанной.

(19) Вписанная сфера касается граней в центрах описанных около этих

граней окружностей.

(20) Сумма внешних единичных нормалей (единичных векторов,

перпендикулярных к граням), равна нулю.

(21) Сумма всех двугранных углов равна нулю.

Практически все свойства равногранного тетраэдра следуют из его

определения, поэтому докажем только некоторые из них.

Доказательство (16).

Т.к. тетраэдр ABCD равногранный, то по свойству (1) AB=CD. Пусть точка К отрезка АВ, а точка L середина отрезка DC, отсюда отрезок KL бимедиана тетраэдра ABCD, откуда по свойствам медиан тетраэдра следует, что точка О - середина отрезка KL, является центром тяжести тетраэдра ABCD.

 

 

К тому же медианы тетраэдра пересекаются в центре тяжести, точке О, и делятся этой точкой в отношении 3:1, считая от вершины. Далее, учитывая вышесказанное и свойство (14) равногранного тетраэдра, получаем следующее равенство отрезков АО=ВО=СО=DО, из которого и следует, что точка О является центром описанной сферы (по определению описанной около многогранника сферы).

Обратно. Пусть К и L - середины ребер АВ и СD соответственно, точка О - центр описанной сферы тетраэдра, т.е. середина отрезка KL. Т.к. О - центр описанной сферы тетраэдра, то треугольники AOB и COD - равнобедренные с равными боковыми сторонами и равными медианами OK и OL. Поэтому ΔAOB=ΔCOD. А значит AB=CD. Аналогично доказывается равенство других пар противоположных ребер, из чего по свойству (1) равногранного тетраэдра и будет следовать искомое.

Доказательство (17).


 

Рассмотрим биссектор двугранного угла при ребре AB, он разделит отрезок DC в отношении площадей граней ABD и ABC.

Т.к. тетраэдр ABCD равногранный, то по свойству (12) SΔABD=SΔABD=>DL=LС, откуда следует, что биссектор ABL содержит бимедиану KL. Применяя аналогичные рассуждения для остальных двугранных углов, и принимая во внимание тот факт, что биссекторы тетраэдра пересекаются в одной точке, которая является центром вписанной сферы, получаем, что эта точка неминуемо будет центром тяжести данного равногранного тетраэдра.

Обратно. Из того, что центр тяжести и центр вписанной сферы совпадают имеем следующее: DL=LC=>SABD=SADC. Доказывая подобным образом равновеликость всех граней и, применяя свойство (12) равногранного тетраэдра, получаем искомое.

Теперь докажем свойство (20). Для этого сначала нужно доказать одно из свойств произвольного тетраэдра.

тетраэдр теорема школьный учебник


Лемма 1.

Если длины векторов перпендикулярных к граням тетраэдра численно равны площадям соответствующих граней, то сумма этих векторов равна нулю.

Доказательство.

Пусть Х - точка внутр и многогранника, hi (i=1,2,3,4) - расстояние от нее до плоскости i-ой грани.

Разрежем многогранник на пирамиды с вершиной Х, основаниями которых служат его грани. Объем тетраэдра V равен сумме объемов этих пирамид, т.е. 3 V=∑hiSi, где Si площадь i-ой грани. Пусть далее, ni - единичный вектор внешней нормали к i-ой грани, Mi - произвольная точка этой грани. Тогда hi =(ХMi, Sini), поэтому 3V=∑hiSi=∑(ХMi, Sini)=(ХО, Sini)+(ОMi, Sini)=(ХО, ∑Sini)+3V, где О - некоторая фиксированная точка тетраэдра, следовательно, ∑Sini=0.

Далее очевидно, что свойство (20) равногранного тетраэдра является частным случаем вышеуказанной леммы, где S1= S2= S3= S4=>n1=n2=n3=n4, и так как площади граней не равны нулю, получаем верное равенство n1+n2+n3+n4=0.

В заключение рассказа о равногранном тетраэдре приведем несколько задач на эту тему.

Задача 1.

Прямая, проходящая через центр масс тетраэдра и центр описанной около него сферы, пересекает ребра AB и CD. Докажите, что AC=BD и AD=BC.

Решение.

Центр масс тетраэдра лежит на прямой, соединяющей середины ребер АВ и СD.

Следовательно, на этой прямой лежит центр описанной сферы тетраэдра, а значит, указанная прямая перпендикулярна ребрам АВ и СD. Пусть С` и D` - проекции точек C и D на плоскость, проходящую через прямую АВ параллельно СD. Т.к. AC`BD` - параллелограмм (по построению), то АС=ВD и АD=ВС.

Задача 2.

Пусть h - высота равногранного тетраэдра, h1 и h2 - отрезки, на которые одна из высот грани делится точкой пересечения высот этой грани. Доказать, что h2=4h1h2; доказать также, что основание высоты тетраэдра и точка пересечения высот грани, на которую эта высота опущена, симметричны относительно центра окружности, описанной около этой грани.

Доказательство.

Пусть АВСD - данный тетраэдр, DH - его высота, DA1, DВ1, DС1 - высоты граней, опущенные из вершины D на стороны ВС, СА и АВ.

Разрежем поверхность тетраэдра вдоль ребер DA, DB, DC, и сделаем развертку. Очевидно, что Н есть точка пересечения высот треугольника D1D2D3. Пусть F - точка пересечения высот треугольника ABC, АК - высота этого треугольника, АF=h1, FК=h2. Тогда D1Н=2h1, D1A1=h1-h2.

Значит, поскольку h - высота нашего тетраэдра, h2=DН2=DA2 - НA12= (h1+ h2)2 - (h1- h2)2=4h1h2. Пусть теперь М - центр тяжести треугольника ABC (он же центр тяжести треугольника D1D2D3), О - центр описанной около него окружности. Известно, что F, М и О лежат на одной прямой (прямая Эйлера), причем М - между F и О, FM=2МО, С другой стороны, треугольник D1D2D3 гомотетичен треугольнику АВС с центром в М и коэффициентом (-2), значит МН=2FM. Из этого следует, что ОН=FO.

Задача 3.

Доказать, что в равногранном тетраэдре основания высот, середины высот и точки пересечения высот граней лежат на поверхности одной сферы (сферы 12 точек).

Доказательство.

Решая задачу 2, мы доказали, что центр описанной около тетраэдра сферы проецируется на каждую грань в середину отрезка, концами которого является основание высоты, опущенной на эту грань, и точка пересечения высот этой грани. А поскольку расстояние от центра описанной около тетраэдра сферы до грани равно , где h - высота тетраэдра, центр описанной сферы удален от данных точек на расстояние , где а - расстояние между точкой пересечения высот и центром описанной около грани окружности.

 



2020-02-03 536 Обсуждений (0)
Равногранные тетраэдры 0.00 из 5.00 0 оценок









Обсуждение в статье: Равногранные тетраэдры

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (536)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.011 сек.)