Мегаобучалка Главная | О нас | Обратная связь


Основные части аппарата ИВЛ



2020-03-19 258 Обсуждений (0)
Основные части аппарата ИВЛ 0.00 из 5.00 0 оценок




Основная задача вентилятора – обеспечить перемещение воздуха в легкие больного. Эта цель может быть достигнута путем создания отрицательного давления в плевральной полости или, наоборот, с помощью положительного давления на входе в дыхательные пути, а также при комбинированном использовании обоих способов.

В настоящее время преимущественно применяются респираторы внутреннего действия, подающие поток газа к легким больного. Респираторы наружного действия, которые создают отрицательное давление («железные легкие», кирасовые респираторы), представляют лишь исторический интерес. Еще один способ обеспечения газообмена – электростимуляция дыхания, также применяется нечасто. Принцип его действия заключается в управлении вентиляцией путем периодического раздражения диафрагмальных нервов или диафрагмы электрическими импульсами.

Источником питания современных вентиляторов служат электроэнергия или сжатый газ. Аппараты с электроприводом подключаются к обычной электросети (220 В, 50 Гц), электрическим батареям или аккумуляторам (чаще всего их используют в качестве альтернативного источника питания или в аппаратах ИВЛ, предназначенных для транспортировки). Респираторы, работающие от сжатого газа, называют пневматическими (или с пневматическим приводом). Некоторые аппараты для создания градиента давления используют энергию сжатого газа, который, однако, подается с помощью компрессора, работающего от электричества. Их принято относить к аппаратам с комбинированным питанием. Функциональные возможности последних весьма высоки, система управления в них обеспечивается с помощью микропроцессорного устройства .

Работа механизмов, вызывающих движение газа в легкие больного, регулируется так называемой управляющей схемой, которая определяет, какой из параметров будет поддерживаться на заданном уровне (контролироваться) во время вдоха.

Существует четыре основных параметра, которые могут контролироваться во время работы респиратора: давление, объем, поток и время. Соответственно, по виду контролируемого параметра респираторы классифицируются как контролируемые по объему, давлению, потоку или времени.

При контроле по давлению респиратор поддерживает заданный паттерн давления в дыхательном контуре независимо от характеристик легких больного. В то же время поток и объем в этой ситуации будут во многом определяться импедансом легочной ткани.

В случае управления по объему, контролирующий механизм измеряет дыхательный объем и поддерживает заданную кривую «объем-время».

В большинстве респираторов доставляемый объем контролируется опосредованно, путем измерения и изменения потока и инспираторного времени. Вентилятор, таким образом, является контролируемым по потоку (Puritan-Bennet 7200, Bear 1000, Servoventilator 900C). Объем в такой ситуации просто высчитывается, при этом он не зависит от механических характеристик легких.

При контроле по времени, давление, а также поток и объем зависят от механических характеристик дыхательной системы. Единственный параметр, который контролируется в этой ситуации, – это инспираторное и экспираторное время. Некоторые высокочастотные вентиляторы являются контролируемыми по времени.

Процесс изменения потока и давления по времени может быть отображен графически. Результирующую фигуру принято называть кривой. Во время инспираторной фазы вентиляторы способны создавать прямоугольную, экспоненциальную, рампообразную и синусоидальную кривые. Тип кривой зависит от того, какую из переменных вентилятор контролирует. Например, если осуществляется контроль давления, то кривая потока - прямоугольная или экспоненциальная, при контроле по объему - рампообразная или синусоидальная, при контроле по потоку – прямоугольная, синусоидальная, рампообразная (восходящая или убывающая) или экспоненциальная падающая.

Респиратор одномоментно может контролировать только один параметр: либо давление в дыхательных путях, либо инспираторную кривую объема, либо кривую потока. Эти параметры, соответственно, и становятся управляемыми.

В дыхательном цикле вентилятора различают четыре фазы: инспираторную, переключение с вдоха на выдох, экспираторную, переключение с выдоха на вдох. В каждой из них определенный показатель (параметр, переменная) измеряется и используется для начала, поддержания и окончания фазы.

Когда время, давление, объем или поток достигают заданной величины и вызывают переход работы вентилятора с выдоха на вдох, он триггеруется по одному из этих параметров. Например, если установлена аппаратная частота дыхания 12 раз/мин, то дыхательный цикл будет длиться 5 с (60 : 12). Предполагается, что вентилятор по прошествии этого времени переключится на следующий инспираторный период. Данное действие происходит независимо от самостоятельных попыток больного. В таком случае можно сказать, что вентилятор триггеруется по времени.

Если вентилятор имеет возможность фиксировать попытку больного, обычно используют триггерование по давлению или по потоку. Часто под триггерной вентиляцией понимают именно те режимы, при которых инспираторная фаза инициируется усилием больного. Например, если установить чувствительность триггера на 2 см Н2 О, вентилятор будет фиксировать инспираторные усилия больного лишь тогда, когда давление в дыхательном контуре вследствие самостоятельной попытки больного осуществить вдох уменьшится на 2 см Н2 О ниже исходного (базового) уровня. В этом случае произойдет триггерование по давлению, и вдох будет инициирован независимо от установленной частоты дыхания. Если чувствительность установлена неверно, например, занижена, больной должен будет приложить больше усилий, чтобы инициировать инспираторную фазу. Если чувствительность триггера наоборот завышена, может быть отмечено автоматическое срабатывание респиратора даже при отсутствии каких либо попыток со стороны больного.

Триггерование по потоку может осуществляться несколькими способами. Например, когда базовый поток вследствие попытки больного вдохнуть снижается на заданную величину. Предположим, что базовый поток, который проходит через дыхательный контур аппарата, составляет 10 л/мин, а чувствительность триггера установлена на 3 л/мин. Когда вентилятор определяет падение потока на 3 л/мин (на выходе из дыхательного контура) от исходных значений (10 л/мин), он начинает инспираторную фазу. Эта система требует меньше усилий при дыхании больного, чем триггерование по давлению при сопоставимых параметрах.

Инициация вдоха, кроме вышеперечисленных способов может осуществляться вручную, вследствие экскурсий грудной клетки и т.д.

Триггерование по потоку и по давлению нарушается в условиях ауто-ПДКВ, поскольку при обеих триггерных системах больной дыхательным усилием должен преодолеть уровень ауто-ПДКВ (до уровня базового давления - внешнее ПДКВ или 0), прежде чем аппарат зафиксирует эту попытку.

Длительность инспираторной фазы определяется временем от начала инспираторного потока до начала экспираторного потока. В течение инспираторной фазы респиратор может контролировать давление, объем или поток, однако обычно применяют контроль лишь первых двух.

Респиратор, как правило, ограничивает значения этих параметров. Если один из них не может превышать заранее установленное значение, принято говорить об ограничении по давлению, по потоку и т.д. Важно отметить, что, например, в режиме принудительной вентиляции легких, контролируемой по давлению, последнее в инспираторную фазу не может превышать заданного значения. Однако достижение этого давления не приводит к переключению с вдоха на выдох. Инспираторная фаза в таком случае закончится по истечении установленного времени. Таким образом, ограниченный параметр не может превысить установленного значения, но он не определяет смену фаз дыхательного цикла.

Все современные респираторы имеют возможность ограничения максимального давления с помощью специальных предохранительных клапанов. Следовательно, независимо от механизма переключения фаз цикла и контролируемого параметра (контроль по объему или по давлению), респираторы обеспечивают режимы вентиляции, ограниченные по давлению. Это предохраняет больного от избыточного давления в дыхательных путях, особенно при использовании режима вентиляции, контролируемого по объему. Обычно устанавливают уровень лимитирующего давления на 10 см Н2 О выше максимального давления, создаваемого при объемной вентиляции. Достижение предела давления, как правило, сопровождается включением световой и аудио сигнализации. На некоторых респираторах при достижении предельно допустимого давления происходит экстренное переключение инспираторной фазы на экспираторную.

По способу переключения фаз дыхательного цикла с вдоха на выдох (циклирование) различают респираторы с переключением по времени, по потоку, по давлению или по объему.

Наиболее часто в качестве параметра для переключения фаз дыхательного цикла используется время. При переключении по времени фаза вдоха прекращается по истечении заданного времени вдоха. Аппарат ограничивает инспираторный поток (или инспираторную фазу, если используется пауза вдоха) заданным временем, после чего открывается клапан выдоха, и начинается экспираторная фаза.

Во многих респираторах третьего поколения при реализации режимов, контролируемых по объему (CMV-VC, SIMV-VC), аппарат может измерять поток и высчитывать время, необходимое для доставки заданного дыхательного объема. Таким образом, переключение на выдох происходит по истечении определенного времени. Следует также отметить, что режимы вентиляции, контролируемые по давлению (РСV, SIMV-РC), фактически также являются тайм-циклическими (т.е. ограничиваемыми по времени).

При переключении фаз дыхательного цикла по давлению инспираторная фаза прекращается, когда достигается заданное давление в дыхательных путях. Переключаемый по давлению вдох заканчивается по достижении заданного давления в дыхательном контуре, независимо от дыхательного объема, инспираторного времени и потока. Дыхательный объем в этой ситуации зависит от растяжимости легких и сопротивления дыхательных путей. Поскольку доставляемый объем в такой ситуации мало предсказуем, режимы с переключением по давлению редко используются в интенсивной терапии. Описанный вариант вентиляции можно наблюдать на некоторых современных респираторах, когда срабатывание клапана, ограничивающего максимальное давление, приводит к прекращению инспираторного потока и переключению на выдох.

Переключаемый по объему вдох прекращается после доставки заданного дыхательного объема в легкие пациента, независимо от пикового давления, инспираторного потока и времени. Именно по такому принципу работают, например, респираторы РО-5, РО-6, а также другие аппараты ИВЛ, предназначенные в основном для проведения анестезии.

При режимах с переключением по объему вентилятор не может компенсировать возможные утечки газа, которые могут быть выявлены путем определения объема выдыхаемого газа. Иногда также ошибочно считают, что заданный дыхательный объем гарантированно доставляется в легкие больного независимо от сопротивления дыхательных путей и легочно-торакального комлайнса. В действительности это утверждение не совсем верно. В инспираторную фазу воздух поступает в дыхательный контур и легкие больного, причем распределение газа во многом зависит от их относительной растяжимости. В среднем считается, что потери дыхательного объема в дыхательном контуре составляют приблизительно 4 мл/см Н2 О.

Вдох, переключаемый по потоку, прекращается, когда инспираторный поток, развиваемый вентилятором, снижается до определенной (выбранной) величины, независимо от дыхательного объема и времени вдоха. Этот способ смены фаз дыхательного цикла используется в режиме вентиляции с поддержкой давлением (PSV). Обычно переключение на выдох происходит, когда поток газа уменьшается до 25% от максимального инспираторного потока. Для респиратора это означает, что инспираторное усилие больного ослабевает, и больной собирается сделать выдох.

В течение экспираторной фазы также контролируется один из параметров (поток, объем, давление или время). Наиболее часто в экспираторную фазу поддерживается заданное давление, которое может быть на уровне атмосферного или положительным (ПДКВ). Поток также может использоваться в качестве показателя, который устанавливается в экспираторную фазу. Например, базовый поток на аппарате «Puritan-Bennet 7200» выставляется оператором («flow-by»).

Чтобы четыре фазы полного дыхания были выполнены, оператор выбирает и устанавливает определенные функции и регулировочные параметры с помощью кнопок, рукояток и т.д., расположенных, как правило, на передней панели респиратора (управляющая панель, пользовательский интерфейс). Иными словами, с помощью управляющей панели оператор определяет, каким образом дыхательный цикл будет выполнен, т.е. устанавливает параметры вентиляции (табл.2).



2020-03-19 258 Обсуждений (0)
Основные части аппарата ИВЛ 0.00 из 5.00 0 оценок









Обсуждение в статье: Основные части аппарата ИВЛ

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...
Почему человек чувствует себя несчастным?: Для начала определим, что такое несчастье. Несчастьем мы будем считать психологическое состояние...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (258)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.01 сек.)