Мегаобучалка Главная | О нас | Обратная связь


Неприводимые над полем действительных чисел многочлены



2015-11-20 1864 Обсуждений (0)
Неприводимые над полем действительных чисел многочлены 0.00 из 5.00 0 оценок




Теорема 4. Пусть многочлен, степень которого больше единицы, неприводимый над полем действительных чисел . Тогда существуют такие , , что многочлен ассоциирован с многочленом .

Доказательство: По основной теореме алгебры многочлен имеет хотя бы один комплексный корень. Пусть – корень многочлена , где . Обязательно . Действительно, если допустить, что , то – действительный корень , а тогда делится на многочлен и поскольку степень , то это противоречит неприводимости многочлена над полем . Итак, .

Значит – мнимый корень многочлена , а тогда, по теореме 3, число также является корнем многочлена . Значит, по следствию из теоремы Безу, делится на и на .

А тогда делится на их произведение . При этом, и – неприводим над (так как не имеет действительных корней). Но неприводим над ассоциированы, то есть ▲.

Следствие: В кольце неприводимы только многочлены первой степени и многочлены второй степени, ассоциированные с многочленами вида , где любые действительные числа и .

 

Теорема 5. Любой многочлен положительной степени из кольца можно единственным образом представить в виде

, где , . – не имеют действительных корней, то есть .

Следствие 1: Любой многочлен с действительными коэффициентами имеет чётное число мнимых корней.

Следствие 2: Многочлен нечётной степени с действительными коэффициентами имеет хотя бы один действительный корень.

 

ВОПРОС № 10 Корни многочлена. Отыскание целых и рациональных корней многочлена с целыми коэффициентами.

 

Пусть - кольцо многочленов одной переменной х над полем рациональных чисел .

Опр.1. Рациональное число с называется корнем многочлена , если

Легко видеть, что отыскание рациональных корней многочлена сводится к отысканию рациональных корней многочлена с целыми коэффициентами. Действительно, если , то умножив на общий знаменатель d всех его коэффициентов, мы получим многочлен с целыми коэффициентами, имеющий с многочленом одинаковые рациональные корни, так как Для отыскания рациональных корней многочлена с целыми коэффициентами существует простой способ, вытекающий из следующей теоремы:

Теорема 1. Если рациональное число где , является корнем многочлена с целыми коэффициентами, то р является делителем свободного члена многочлена , а q – делителем старшего коэффициента многочлена .

Доказательство: Пусть , где , , .

Так как - корень , то .

Умножим обе части равенства на , получим

. Перепишем это равенство в виде:

Аналогично, переписав равенство в виде:

▲.

Доказанная теорема дает способ отыскания всех рациональных корней многочлена с целыми коэффициентами. Этот способ заключается в следующем:

1) находим все целые делители свободного члена многочлена : ;

2) находим все целые делители старшего коэффициента многочлена : ;

3) составляем все возможные дроби , , .

4) Не обязательно все получившиеся числа будут корнями многочлена , но все рациональные корни будут находиться среди этих чисел. Поэтому, вычисляя для всех

этих чисел, мы узнаем, какие из них являются корнями, а какие нет.

Следствие 1: Если целое число т есть целый корень многочлена с целыми коэффициентами, то т является делителем свободного члена .

Доказательство: и по теореме 1 . ▲.

Следствие 2: Рациональный корень нормализованного многочлена с целыми коэффициентами является целым числом.

Доказательство: действительно, если - рациональный корень , то по теореме 1 старший коэффициент многочлена делится на , то есть или - целое число. ▲.

Вычисления, связанные с отысканием рациональных корней многочлена с целыми коэффициентами могут оказаться громоздкими, потому что делителей у свободного члена и у старшего коэффициента многочлена может оказаться много; значит придется подвергать «испытанию на корень» много чисел вида .

Такие вычисления могут быть значительно сокращены, если воспользоваться следующей теоремой:

Теорема 2. Пусть рациональное число , где является корнем многочлена с целыми коэффициентами. Тогда для любого целого числа т число .

Доказательство: разделим многочлен на многочлен с остатком, тогда по теореме Безу остаток будет равен значению многочлена при .

Пусть . Положим , учитывая, что - корень , а значит , получим: .

Умножим обе части этого равенства на , получим:

. ▲.

При использовании этой теоремы удобно в качестве т взять целые числа 1 и -1, так как легко вычислить и . Тогда, если - корень , то и . Покажем на примере, как применять теоремы 1 и 2:

Пример: Найти рациональные корни многочлена .

Делители свободного члена 2: делители старшего коэффициента 3: Следовательно, рациональные корни многочлена надо искать среди чисел

1 и не являются корнями . Для сокращения числа испытаний составим числа и . Если - корень , то оба этих числа должны быть целыми (Ц). Результаты запишем в таблице:

 

Ц Ц Ц Д Ц Д
Ц Ц Ц   Д  

Испытанию по схеме Горнера подлежат числа

 

 

Итак, ни одно из чисел не является корнем многочлена , значит многочлен не имеет рациональных корней.

Ответ: многочлен не имеет рациональных корней.

 

 

ВОПРОС № 11 Теорема о делении с остатком для целых чисел и для многочленов.

 



2015-11-20 1864 Обсуждений (0)
Неприводимые над полем действительных чисел многочлены 0.00 из 5.00 0 оценок









Обсуждение в статье: Неприводимые над полем действительных чисел многочлены

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (1864)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)