Мегаобучалка Главная | О нас | Обратная связь


Сферические треугольники.



2019-12-29 572 Обсуждений (0)
Сферические треугольники. 0.00 из 5.00 0 оценок




А:

1. Какого вида треугольники могут быть на сфере?

2. Каждая сторона сферического треугольника меньше суммы двух других его сторон, но больше их разности. Доказать.

Решение: Рассмотрим трёхгранный угол. Известно, что в трёхгранном угле любой его плоский угол меньше суммы двух других плоских углов и больше их разности. Ясно, что сферический треугольник можно получить с помощью любого трёхгранного угла, если пересечь его сферой, центр которой будет совпадать с вершиной данного угла. Так как градусной мерой дуги окружности называется градусная мера соответствующего центрального угла, соотношение линейных углов в трёхгранном угле соответствует соотношению сторон в сферическом треугольнике, т.е. во всяком сферическом треугольнике каждая сторона меньше суммы двух других его сторон и больше их разности.

3. Доказать, что во всяком сферическом треугольнике сумма двух углов без третьего меньше p, а сумма трёх углов принадлежит интервалу (p;3p).

Решение: 1) Для ∆А′В′С′ - полярного данному ∆АВС, имеем: а′ + b′ > с′ (по предыдущей задаче). Переходя от полярного треугольника к данному, получим: π - ÐА + π - ÐВ > π - ÐС, откуда имеем ÐА +ÐВ -ÐС < π

 2) Площадь сферического треугольника: S∆АВС=(ÐА+ÐВ+ÐС – π)r2, так как S∆АВС > 0, то ÐА+ÐВ+ÐС – π > 0 и, следовательно, ÐА+ÐВ+ÐС > π.

4. Если в сферическом треугольнике две стороны конгруэнтны, то конгруэнтны и углы, противолежащие им. Доказать.

5. В сферическом треугольнике против конгруэнтных углов лежат конгруэнтные стороны. Доказать.

6. Доказать, что в сферическом треугольнике против большего угла лежит и большая сторона.

Решение: Пусть в ∆АВС, ÐC>ÐB, построим CD так, что ÐАВС=ÐBCD,

тогда ∆BCD – равнобедренный и BD=CD, тогда верно неравенство:

AC<AD+DC=AD+DB=AB.(рис.1)

 

 

Рис.1

 

7. Доказать, что в сферическом треугольнике против большей стороны лежит и больший угол.

Решение: Пусть в ∆АВС, АВ > АС. Предположим, что ÐС=ÐВ, тогда АВ=АС или, что ÐС < ÐВ, тогда АВ < АС (из предыдущей задачи). Получили противоречие, значит, единственный возможный вариант ÐС>ÐB.

8. Найти площадь сферического треугольника, углы которого равны 900, 600 и 450, если этот треугольник лежит на шаре, радиус которого равен 10 м.

Решение: Площадь сферического треугольника:S∆АВС=(ÐА+ÐВ+ÐС – π)r2, тогда S∆АВС=(900+ 600 + 450 – 1800)102=1500м2.

9. Доказать, что медианы сферического треугольника (т.е. меньшие дуги больших окружностей, соединяющие вершины с серединами противоположных сторон) пересекаются в одной точке.

Решение: Пусть АВС – данный сферический треугольник; AD, BE и CF- его медианы (см. рис.2), S – центр сферы.

Рис.2

Так как прямая SD делит дугу ВС пополам, то она делит и хорду ВС в точке D0 пополам, так что D0B=D0C. Точно также прямые SE и SF проходят через середины E0 и F0 хорд АС и АВ. Прямые AD0, BE0 и CF0 проходят, как медианы прямолинейного треугольника АВС, через одну точку. Следовательно, плоскости ASD0, BSE0 и CSF0 проходят через одну прямую d, а лежащие в этих плоскостях дуги АD, ВЕ и СF – через одну точку G.

10. Доказать, что высоты сферического треугольника пересекаются в одной точке. Верно ли, что биссектрисы сферического треугольника пересекаются в одной точке?

11. Доказать, что гипотенуза прямоугольного сферического треугольника меньше квадранта, если оба катета одновременно меньше или оба больше квадранта, и больше квадранта, если один из катетов меньше, а другой больше квадранта.

Решение: Рассмотрим ∆АВС, ÐАСВ=  и катеты АС< , BC<  (рис.3)

 

 

Рис. 3

Отложим на большой окружности СВ в сторону точки В дугу СК, равную квадранту. Точка К будет одним из полюсов большой окружности АС, и потому дуга АК также будет равна квадранту.

    При этом АС будет меньшей перпендикулярной дугой, опущенной из точки А на большую окружность СВ, и так как точка В лежит ближе к С, чем точка К, то АВ<АК. Таким образом, гипотенуза треугольника меньше квадранта.

    Если бы катет АС был меньше квадранта, а катет ВС – больше квадранта, то при тех же условиях точка К лежала бы ближе к С, чем точка В, и мы имели бы АВ>АК. Таким образом, гипотенуза была бы больше квадранта.

    Наконец, если оба катета АС и ВС больше квадранта, то мы продолжим дуги СА и СВ за точки А и В до их вторичного пересечения в точке С`, диаметрально противоположной точке С. Гипотенуза АВ треугольника АВС будет и гипотенузой треугольника АВС`, в котором в каждом из катетов меньше квадранта. Следовательно, в этом случае гипотенуза АВ меньше квадранта.

В:

1. Доказать, что два сферических треугольника равны по трём углам.

2. Дан треугольник АВС и полярный к нему А′В′С′. Доказать, что треугольник, полярный к треугольнику А′В′С′, совпадёт с треугольником АВС.

3. Найти максимум или минимум площади сферического треугольника, в котором известна сторона и угол и соответствующая высота.

4. Доказать, что:

1) если медиана сферического треугольника равна квадранту (четверть окружности), то она одновременно служит биссектрисой того угла, через вершину которого она проходит (не зависимо будет ли данный треугольник равнобедренным или нет), и равна полусумме сторон, прилежащих к этому углу.

2) Если медиана меньше квадранта, то она образует с большей из двух сторон АВ и АС, между которыми она проходит, угол меньший, чем с другой стороной; она больше (за исключением случая равнобедренного треугольника) биссектрисы угла ВАС, считаемой от вершины до противоположной стороны, и меньше полусуммы сторон АВ и АС, которая в свою очередь меньше квадранта; если медиана больше квадранта, то имеют место противоположные неравенства. (Вторая часть этого предложения сводится к первой путём замены вершины А, из которой выходит медиана, диаметрально противоположной точкой.

3) Рассмотреть обратные предложения. Одно из них гласит: если медиана сферического треугольника является одновременно биссектрисой угла, из вершины которого она выходит, то или она равна квадранту, или треугольник равнобедренный.

Решение:

1) Пусть медиана AD сферического треугольника АВС (рис.4) равна квадранту. Отложим на продолжении дуги AD за точку D дугу DE, равную AD. Тогда ∆ABD =∆ECD, так как ÐADB=ÐEDC; BD=CD и AD=ED.

Отсюда   ÐBAD=ÐCED (1)

                  CE=AB        (2)

Так как дуга ADE равна половине большой окружности, то точка Е диаметрально противоположна точке А и точки А, С и Е лежат на одной большой окружности, так что ÐCED=ÐCAD. Из сравнения этого равенства с равенством (1) вытекает, что ÐBAD=ÐCAD, так что AD есть биссектриса ÐВАС.

Далее, в силу (2), имеем

AB+AC=EC+AC=ACE=ADE=2AD.

Итак, если медиана сферического треугольника равна квадранту, то она одновременно служит биссектрисой того угла, через вершину которого она проходит, и равна полусумме сторон, прилежащих к этому углу.

 

           

          Рис.4                                     Рис.5

 

2) Пусть далее медиана AD сферического треугольника ABC (рис.5) меньше квадранта. Отложим опять на продолжении дуги AD за точку D дугу DE, равную AD. Тогда ∆ABD = ∆ECD будут равны (см. 1) ), и будут верны равенства (1) и (2). В этом случае дуга ADE=2AD будет меньше половины окружности большой окружности, и потому точка D будет лежать на стороне АЕ сферического ∆АСЕ. Если в данном треугольнике АВ>АС, то в ∆АСЕ будем иметь (в силу равенства ЕС=АВ) СЕ>АС. Отсюда следует, что ÐCAD>ÐCED (см. §2 зад. 7 части А), так что и силу равенства (1) ÐCAD>ÐBAD. Итак, если медиана треугольника меньше квадранта, то она образует с большей из двух сторон, между которыми она проходит, угол меньший, чем с другой стороной.

Далее в этом случае имеем ADE = 2AD<AC + CE= AB+АС, так что если медиана треугольника меньше квадранта, то она меньше полусуммы сторон, между которыми она проходит.

Пусть, как и выше, медиана АD сферического ∆ ABC (рис. 6) меньше квадранта и пусть для определенности сторона АВ > АС. В таком случае точка А отлична от полюсов большого круга ВС, и через неё проходит (теорема 4) единственная большая окружность IAH, перпендикулярная к ВС. Обозначим через I и H основания меньшей и большей перпендикулярных дуг AI и АН, опущенных из точки А на большую окружность ВС (теорема 5). Пусть далее К и L середины дуг, на которые точки I и H делят большую окружность ВС, так что каждая из дуг IK=КН = HL= LI равна квадранту. При этом точки К и L будут, очевидно, полюсами большой окружности IАН, и дуги AK = AL также будут равны квадранту.

Так как медиана АD по предположению меньше квадранта, то по теореме о сравнительной длине перпендикулярных и наклонных дуг (теорема 5) точка D лежит (рис. 6 и 7) между точкой I и одной из точек К и L, скажем К (точка D не может совпадать с I, так как в последнем случае треугольник ABC был бы равнобедренным). Далее, так как сторона ВС заведомо меньше половины большого круга, то дуга DB меньше квадранта. В то же время дуга DКН более квадранта, и потому точка Н не лежит на дуге ВС. Так как ÐBAD < ÐCAD, как было доказано выше, то биссектриса AM треугольника ABC проходит внутри ÐDAC, и точки Н,В, D,М и С следуют на большой окружности ВС в перечисленном здесь порядке. При этом точка С может лежать между точками B и I, как на рисунках 6 и 7, или же точка I - между точками В и С, как на рисунке 8. В последнем случае, в силу АВ > АС, будем иметь и ВI>IС, откуда ÐВАI> ÐСАI, так что точка М лежит между В и I. Итак, в обоих случаях точки H,B,D,M и I следуют на большой

 


                                         

                            

               Рис.6                                                 Рис.7

окружности ВС в том именно порядке, как они здесь перечислены. Следовательно, имеем (в силу теоремы о длине наклонных дуг, теорема 5) AD > AM. Итак, если медиана AD меньше квадранта, то она больше биссектрисы AM угла ВАС.

Пусть в том же предположении, что медиана AD меньше квадранта, Во - точка, диаметрально противоположная точке В. Так как точка D лежит между I и К и дуга DB меньше квадранта, то точка В лежит на дуге IKH, а точка Во - на дуге ILH.

Пусть точка I лежит между точками С и Во (рис. 6 и 7). Так как точка D лежит между точками I и К и, кроме того, BD = DC, то дуга СI меньше дуги ВН и, значит, меньше дуги ВоI, равной ВН. Точки С и Во могут лежать и по одну сторону от точки I. Так как дуга ВС меньше полуокружности, то при этом точка С будет лежать между I и Во, и опять будем иметь СI< BоI.

Так как СI < ВоI, то и АС < АВо, и потому АВ+АС < АВ + АВо. Так как сумма дуг АВ + АВо равна полуокружности большой окружности, то отсюда следует, что если медиана треугольника меньше квадранта, то полусумма сторон, между которыми она проходит, также меньше квадранта.

 

 

Рис. 8

Случай, когда медиана АD больше квадранта подробно изложен в дистанционном курсе «Сферическая геометрия».

3) Так как в каждом из трёх рассмотренных случаев мы имеем по одному условию - медиана соответственно а) равна квадранту, b) меньше квадранта и с) больше квадранта - и по нескольку заключений (первое заключение касается соотношения между медианой и биссектрисой, второе — углов между медианой и прилежащими сторонами, третье — соотношения между медианой и полусуммой сторон, наконец, четвёртое — соотношения между полусуммой сторон и квадрантом), то мы будем иметь целый ряд обратных теорем в зависимости от того, какой из трех случаев а), b) или с) мы имеем в виду и какое из заключений прямой теоремы мы примем за условие обратной теоремы.

 Переходя к формулировкам теорем, обратных доказанным выше, будем объединять вместе обратные теоремы, аналогичные по своему содержанию. Таким образом, получается следующий перечень обратных теорем:

1) Если биссектриса сферического треугольника равна квадранту, то она одновременно служит и медианой того же треугольники.

В самом деле, пусть биссектриса AD сферического треугольника ABC (см. рис. 1) равна квадранту. Отложим опять на продолжении дуги AD за точку D дугу DE, равную АD. Так как дуга ADE равна полуокружности большого круга, то точки А, С и Е лежат на одном большой окружности, и потому ÐCED = ÐCAD= ÐBAD. Сферические треугольники ABD и CED будут равны (по второму признаку равенства), так как AD = ED; ÐADB= ÐEDC; ÐBAD = ÐCED. Отсюда BD=CD, т. e. AD - медиана ∆ ABC.

2) Если медиана сферического треугольника являетcя одновременно и биссектрисой того  угла, из вершины которого она выходит, то или медиана равна квадранту, или треугольник равнобедренный.

3) Если медиана сферического треугольника образует с большей из двух сторон, между которыми она проходит, угол меньший (больший), чем с другой стороной, то медиана меньше (больше) квадранта.

4) Если медиана сферического треугольника больше (меньше) биссектрисы, выходящей с ней из одной вершины, то медиана меньше (больше) квадранта.

5) Если медиана сферического треугольника равна полусумме сторон (меньше, больше полусуммы сторон), между которыми она проходит, то медиана равна квадранту (меньше, больше квадранта).

6) Если полусумма двух сторон сферического треугольника равна квадранту (меньше, больше квадранта), то медиана, выходящая из общего конца, также равна квадранту (меньше, больше квадранта).

Так как в трёх прямых теоремах заключения охватывают все имеющиеся здесь возможности, то эти обратные теоремы 2) — 6) легко доказываются от противного.

Приведём доказательство одной из теорем, приведённых под рубрикой 3). Пусть в некотором треугольнике медиана больше биссектрисы. Если бы медиана была равна квадранту или больше его, то на основании прямых теорем медиана была бы равна биссектрисе или меньше её, что противоречит условию. Следовательно, медиана меньше квадранта.

Аналогично доказываются остальные обратные теоремы.

 



2019-12-29 572 Обсуждений (0)
Сферические треугольники. 0.00 из 5.00 0 оценок









Обсуждение в статье: Сферические треугольники.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Модели организации как закрытой, открытой, частично открытой системы: Закрытая система имеет жесткие фиксированные границы, ее действия относительно независимы...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (572)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.007 сек.)