Мегаобучалка Главная | О нас | Обратная связь


Основы геометрической оптики. 2 страница



2020-03-18 191 Обсуждений (0)
Основы геометрической оптики. 2 страница 0.00 из 5.00 0 оценок




QP
На поверх­ности экрана (в области PQ) про­исходит наложение когерентных пучков и наблюдается интерференция.

2.2.4. Интерференция света в тонких пленках. Пусть на плоскопараллельную про­зрачную пленку с показателем преломле­ния n и толщиной h под углом a падает плоская монохроматическая волна (для простоты рас­смотрим только один луч из падающего пучка – 1). На поверхности пленки в точке A луч 1 де­лится на два: частично отразится от верх­ней поверхности пленки, а частично пре­ломится (рис. 2–4). Пленка находится в воздухе (абсолютный показа­тель преломления n0=1).

 

Преломленный луч в точ­ке B частично преломится, а частично отразится и пойдет к точке С. Здесь он опять частично отразится и преломится, выходя в воздух под углом a (луч 2*). Если оптическая разность хода этих лучей будет мала по сравнению с длиной когерентности па­дающей волны, то эти лучи будут когерент­ными. Если на их пути поставить собирающую линзу то они сойдутся в одной из точек фокальной плоскости линзы и дадут интерференционную кар­тину, которая будет определяться оптиче­ской разностью хода между интерферирующи­ми лучами. Интерференци­онные полосы, возникающие в результате наложения лучей, падающих на плоскопараллельную пластинку под одинаковыми углами, называются полосами равного н аклона.

Интерференция от тонких пленок может наблю­даться не только в отраженном, но и в проходящем свете. Рассмотрим интерференцию в отраженном свете.

Оптическая разность хода, возникаю­щая между лу­чами 1* и 2* равна

,

где член ±l0/2 обусловлен потерей полуволны при отражении света от границы раздела. Ес­ли n> n0, то потеря полуволны произойдет в точке Aи вышеупомянутый член будет иметь знак минус, если же n<n0, то потеря полуволны произойдет в точке Си l0/2будет иметь знак плюс.

Из рис. 2-5 следует

.

Учитывая в точке С закон преломления , получим

.

С учетом потери полуволны для оптиче­ской разности хода получим

.                     (2-6)

Учитывая, что n> n0, получаем .

Интерференционный максимум наблюдается, если (см. (2-2))

.  (2-7)

Интерференционный минимум наблюдается, если (см. (2-3))

.  (2-8)

 

2.2.5. Интерференция света в оптическом клине. Рассмотрим пленку переменной толщины, например клинообразную. В отраженном свете поверхность такой пленки уже не будет равномерно освещен­ной, так как разность хода лучей, интерферирующих в различных (по толщине) местах пленки, будет неодинаковой. Разность хода сохраняется неизменной толь­ко вдоль линий, параллельных ребру клина, и убывает в направлении от осно­вания к ребру (рис. 2–6,а).

В результате интерференции наблюдаются светлые и темные полосы параллель­ные ребру клина (рис. 2–6,б). Чем больше угол клина a, тем быстрее изменяется разность хода лучей вдоль клина и тем гуще будут расположены интерференционные полосы. При ис­пользовании белого света интерференционные полосы расширяются, приобретая радужную окраску. Каж­дая из полос возникает за счет отражения от мест, имеющих одинаковую толщину, поэтому они называются полоса­ми равной толщины.

В общем слу­чае толщина пленки и её показатель преломления может изменяться произволь­но и при освещении белым светом возникает весьма причудли­вая по форме и расцветке интерференционная картина. Такую карти­ну дают мыльные пленки, нефтяные пятна на поверхности воды, крылья мелких насекомых, жировые налеты на стекле и другие тонкие пленки толщиной по­рядка 10–6 м. В более толстых пленках цветные интерфе­ренционные полосы ока­зываются настолько сближенными, что частично перекрывают друг друга и интерференционная картина будет неразли­чимой.

2.2.6. Кольца Ньютона. Кольца Ньютона, явля­ются примером полос равной толщины, наблюдаемые при контакте плоскопа­раллельной пластинки и соприкасающейся с ней плосковыпуклой линзы с большим радиу­сом кривизны (рис.2–7,а).

Пучок света падает нормально на линзу и час­тично отражается от верхней (точка Е) и нижней (точка F) поверхно­стей воздушного зазора меж­ду линзой и пластинкой. При наложении от­ра­женных лучей возникают полосы равной толщи­ны, при нормальном падении света имеющие вид окружностей (рис. 2–6,б) или эллипсов при на­клонном падении света.

 При освещении белом светом наблюдаем интерференционную кар­тину радужной окраски, а при ос­вещении монохроматическим светом наблюдаются светлые и темные полосы.

Рассмотрим интерференцию лучей в отраженном свете. Оптическая разность хода лучей, отраженных от верхней и нижней поверхностей воздушного зазора на рас­стоянии r=D E  от точки O, равна

,

где показатель преломления воздуха принят равным единице, а член l0/2 обусловлен потерей полуволны при отражении света от оптически более плотной среды (точка F). Из подобия прямоугольных треугольников EOD и EDM следует, что

где   и ,

так как . Таким об­разом,

и

    Из этого соотношения и условий (2.2 и 2.3) следует, что радиусы m- х светлого (rсв)  и темного (rт)колец Ньютона в отраженном свете равны:

        (2-9)

Очевидно, что в проходящем свете

2.3. ПРИМЕНЕНИЕ ИНТЕРФЕРЕНЦИИ СВЕТА

2.3.1. Как видно из рассмотренных в предыдущем параграфе приме­ров, интерференционные явления обусловлены волновой приро­дой света и их количественные закономерности зависят от длины волны l. Измеряя расстояния между полосами в опыте с биприз­мой Френеля или радиусы колец Ньютона, можно определить длины волн световых лучей. Такова первая группа применений интерференционных явлений, имеющая принципиальное значе­ние, — доказательство волновой природы света и измерение длин волн.

2.3.2. Правильная форма колец Ньютона (рис. 2–6,б) искажается при всяких, даже незначительных, дефектах в обработке выпуклой поверхности линзы и верхней поверхности пластины. Поэтому наблюдение формы колец Ньютона позволяет осуществлять быстрый и весьма точный контроль качества шлифовки плоских пластин и линз, а также бли­зость поверхностей линз к сферической форме.

2.3.3. Возможность ослабления отраженного света в тонких пленках вследствие интер­ференции широко используется в опти­ческих приборах: фотоаппаратах, биноклях, перископах и др. Дело в том, что часть световой энергии отражается от поверхностей линз; это заметно снижает яркость и контрастность изображения рассматриваемых (или фотографируемых) объектов и создает блики. Для устранения этого на передние поверхности имеющихся в них линз и призм наносят тонкие прозрачные пленки, абсолютный показатель преломления которых nп меньше абсолютного показателя преломления n для ма­териала линзы или призмы. Толщина пленки подбирается таким об­разом, чтобы осуществлялся интерференционный минимум отражения для света с длиной волны l » 5,5×10-7м (зеленый свет), которая соответствует наибольшей чувствительности человеческого глаза. Такая оптика получила название просветленной оптики. В отражен­ном свете просветленные линзы и призмы кажутся окрашенными в фиолетовый цвет, так как они заметно отражают только красный и сине-фиолетовый свет. Обычно на поверхность линз наносят пленку из кремнезема или из фторис­тых солей. Кроме того, просветляющую пленку можно создать непосредствен­но на поверхности линзы путем обработки этой поверхности растворами кис­лот (метод И. В. Гребенщикова).

2.3.4. Явление интерференции также приме­няется в очень точных измерительных при­борах — интерферометрах. Все интерферометры основаны на одинаковом принципе и различаются лишь конструкционно.

На рис. 2-8 приведена схема интерферометра Майкельсона. Монохроматический свет от источника S падает под углом 45° на плоскопараллельную пластинку P1. Сторо­на пластинки, удаленная от S, посеребренная и полупрозрачная, разделяет луч на две части: луч 1 (отражается от посе­ребренного слоя) и луч 2 (проходит через него). Луч 1 отражается от зеркала M1 и возвращаясь вновь проходит че­рез пластинку P1 (луч 1'). Луч 2 идет к зеркалу M2, отражается от него, воз­вращается обратно и отражается от пластинки P1 (луч 2'). Так как первый из лучей проходит пластинку P1 дважды, то для компенсации возникающей разности хода на пути второго луча ставится пластинка P2 (точно такая же, как и P1, только не покрытая слоем серебра).

Так как лучи 1' и 2' когерентны, то наблюдается интерференция, вид которой зависит от оптической разности хода луча 1 от точки О до зерка­ла M1 и луча 2 от точки О до зеркала M2. При перемещении одного из зеркал на расстояние l/4 разность хода обоих лучей увеличится на l/2 и освещенность зрительного поля изменится. Даже по незначительному смещению картины интерференции можно судить о малом перемещении одного из зеркал и использовать интерферометр Майкельсона для точного (порядка 10-7 м) из­мерения длин (измерения длины тел, длины световой волны, изменения длины тела при изменении температуры (интер­ференционный дилатометр)).

Этот интерферометр сыграл фундаментальную роль в разви­тии науки и техники. С его помощью впервые была измерена длина световой волны, проведено изучение тонкой структуры спектральных линий, выполнено первое прямое сравнение эта­лонного метра с определенной длиной волны света. С помощью этого интерферометра был осуществлен знаменитый опыт Майкельсона-Морли, доказавший независимость скорости света от движения Земли.

2.3.5. Рассмотрим теперь прибор, существенная часть которого состо­ит из двух идентичных плоскопараллельных пластинок толщины h к с показателем преломления n — интерферометр Жамена (рис. 2.9).

При падении пучка света на первую пластинку (на рисунке показан только один луч) часть лучей отра­зится от передней грани пластинки, а часть, преломившись, отразится от задней грани; таким образом, из пластинки выйдут два выходят два коге­рентных параллельных луча.

Пройдя сквозь совершенно одинаковые закрытые стеклянные кюветы К1 и К2 (длина кювет l), каждый из лучей, попадая на вторую пластинку, опять раздвоится, и из второй пластин­ки выйдут уже четыре пучка. Лучи 1 и 4 не попадают в оправу объектива, а лучи 2 и 3 собираются линзой и интерферируют.

Полосы интерференции рассматриваются с помощью окуляра, который на рисунке не показан. Если одну из кювет заполнить газом, имеющим известный абсолютный показа­тель преломления n1, а вторую — газом, показатель преломления n2 которого измеряется, то между интерферирующими лучами возник­нет оптическая разность хода, равная . Соответственно произойдет смещение интерференционной картины на  полос, причем

Например, при l=5 см и l=0,5 мкм смещению полос на 0,1 их ширины, которое еще можно зарегистрировать, соответствует очень малое изменение разности (n2— n1):

Таким образом, интерферометр Жамена можно использовать для определения ничтожного изменения показателя преломления, напри­мер при изменении температуры газа или прибавлении посторонних примесей. В соответствии с этим его нередко называют интерферен­ционным рефрактометром. Как показано выше, он крайне чувствите­лен к незначительным изменениям показателя преломления. Однако определение абсолютного значения самого показателя преломления при помощи этого прибора довольно затруднительно. Обычно его применяют таким образом, что сравнивают интересующий нас газ с каким-либо хорошо изученным газом, например, воздухом.

Лекция 4 (2 часа)

 

Дифракция света.  

(Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля. Дифракция света на круглом отверстии. Границы применимости геометрической оптики. Зонная и фазовая пластинки Френеля. Дифракция Фраунгофера от щели. Дифракционная решетка и ее применение. Пространственная дифракционная решетка. Формула Вульфа-Брэггов. Угловая и линейная дисперсия. Разрешающая способность. Критерий Рэлея. Голография)

 Принцип Гюйгенса — Френеля

Дифракцией называется огибание волна­ми препятствий, встречающихся на их пу­ти, или в более широком смысле — любое отклонение распространения волн вблизи любых неоднородностей (препятствий) от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через не­большие отверстия в экранах и т. д.

Различают два вида дифракции:

1. Дифракция в непараллельных лучах (дифракция Френеля), когда на препятствие падает сферическая (или плоская) волна, а дифракционная картина наблюдается на экране, находящемся за ним на конечном расстоянии от препятствия.

2. Дифракция в параллельных лучах (дифракция Фраунгофера), когда на препятствие падает плоская волна, а дифракционное изображение источника света наблюдается на экране, расположенном в фокальной плоскости собирающей линзы, установленной на пути прошедшего за препятствие света.

Явление дифракции объясняется с по­мощью принципа Гюйгенса, согласно которому каждая точка, до кото­рой доходит волна, служит центром вто­ричных волн, а огибающая этих волн дает положение волнового фронта в следующий момент времени.

Пусть плоская волна нормально пада­ет на отверстие в непрозрачном экране (рис. 3-1). Согласно Гюйгенсу, каждая точка во­лнового фронта служит источником вто­ричных волн (в однородной изотропной среде они сферические). Построив огиба­ющую вторичных волн видим, что волна огибает края отверстия, т. е. фронт волны заходит в область геометрической тени.

Принцип Гюйгенса решает за­дачу о направлении распространения во­лнового фронта, но не затрагивает вопро­са об амплитуде волн, распространяющихся по разным направлениям. Френель вло­жил в принцип Гюйгенса физический смысл, дополнив его идеей интерференции вторичных волн.

Согласно принципу Гюйгенса - Фре­неля, световая волна, возбуждаемая ка­ким-либо источником S, может быть пред­ставлена как результат суперпозиции ко­герентных вторичных волн, «излучаемых» фиктивными источниками. Такими источ­никами могут служить бесконечно малые элементы любой замкнутой поверхности, охватывающей источник S. В ка­честве этой поверхности выбирают одну из волновых поверхностей, поэтому все фик­тивные источники действуют синфазно. Таким образом, волны, распространяющи­еся от источника, являются результатом интерференции всех когерентных вторич­ных волн.

Учет амплитуд и фаз вторичных волн позволяет в каждом конкретном случае найти амплитуду (интенсивность) резуль­тирующей волны в любой точке простран­ства, т. е. определить закономерности распространения света.

3.2. Метод зон Френеля

Принцип Гюйгенса является чисто гео­метрическим способом построения волно­вых поверхностей. Он никак не связан с физической природой волн и применим как к упругим, так и к электромагнитным волнам в равной мере. Найдем в произвольной точке М ам­плитуду световой волны, распространяю­щейся в однородной среде из точечного источника S (рис. 3-2).

Согласно принци­пу Гюйгенса — Френеля, заменим дейст­вие источника S действием воображаемых источников, расположенных на вспомога­тельной поверхности Ф, являющейся по­верхностью фронта волны, идущей из источника S. Фре­нель разбил волновую поверхность Ф на кольцевые зоны такого размера, чтобы расстояния от краев зоны до М отлича­лись на l/2, т. е. Р1М- Р0М=Р2М- Р1М=Р3М- Р2М=...= l/2. Подобное разбиение фронта волны на зоны можно выполнить, проведя с центром в точке М сферы радиусами b+l/2, b+2l/2, b+3l/2, … .

Так как колебания от сосед­них зон проходят до точки М расстояния, отличающиеся на l/2, то в точку М они приходят в противоположной фазе и при наложении будут взаимно ослаблять друг друга. Поэтому амплитуда результирующего светового колебания в точке М

A=А1- А2+ А3- А4+ ... ,                              (3.1)

 

где А1, А2, ... — амплитуды колебаний, возбуждаемых 1-й, 2-й, ... зонами.

Для оценки амплитуд колебаний най­дем площади зон Френеля. Пусть внешняя гра­ница m-й зоны выделяет на волновой по­верхности сферический сегмент высоты hm (рис. 3-3). Если площадь этого сег­мента sm, то площадь m-й зоны Френеля равна Dsm = sm - sm-1, где sm-1 — площадь сферического сегмен­та, выделяемого внешней границей (m-1)-й зоны. Из рисунка следует, что

 

       (3-2)

Учитывая, что l<<а и l<<b, получим

                                 (3-3)

Площадь сферического сегмента и площадь m-й зоны Френеля соответственно равны

(3-4)

Выражение (3-4) не зависит от номера зоны m; сле­довательно, при не слишком больших m площади зон Френеля одинаковы.

Согласно предположению Френеля, действие отдельных зон в точке М тем меньше, чем больше угол jm (рис. 3-3) между нормалью n к поверхности зоны и направлением на М, т. е. действие зон постепенно убывает от центральной (око­ло Р0) к периферическим (до нуля). Кроме того, интенсивность излучения в направле­нии точки М уменьшается с ростом номера зоны m и вследствие увеличения расстояния от зоны до точки М. Учитывая оба этих фак­тора, можем записать

А1> А2> А3> А4 … .

Общее число зон Френеля, умещаю­щихся на полусфере, очень велико; напри­мер, при а=b=10 см и l = 0,5 мкм оно равно

Так как число зон Френеля велико, то в качестве допустимого приближения можно счи­тать, что амплитуда колебания Аm от неко­торой m-й зоны Френеля равна среднему арифметическому от амплитуд примыкаю­щих к ней зон, т. е.

.                          (3-5)

Тогда выражение (3-1) можно записать в виде

.     (3-6)

так как выражения, стоящие в скобках, согласно (3-5), равны нулю, а оставша­яся часть от амплитуды последней зоны ±Аm/2 ничтожно мала.

Таким образом, амплитуда, создавае­мая в произвольной точке М сферической волновой поверхностью, равна половине амплитуды, создаваемой одной централь­ной зоной. Следовательно, действие всей волновой поверхности на точку М сводит­ся к действию ее малого участка, меньше­го центральной зоны.

Если в выражении (3-2) положим, что высота сегмента hm<<а (при не слиш­ком больших m), тогда  Под­ставив сюда значение (3-3), найдем ра­диус внешней границы m-й зоны Френеля:

                                (3-7)

При a=b=10 см и l=0,5 мкм радиус центральной зоны               r1= 0,158 мм. Следовательно, распростра­нение света к точке М происходит так, будто световой поток распространяется внутри очень узкого канала вдоль SM, т. е. прямолинейно. Таким образом, принцип Гюйгенса — Френеля позволяет объяснить прямолинейное распростране­ние света.

Правомерность деления волнового фронта на зоны Френеля подтверждена экспериментально с использованием зонных пластинок — стеклянных пластинок, состоящих из прозрачных и не­прозрачных концентрических колец, по­строенных по принципу расположения зон Френеля, т. е. с радиусами rm зон Френеля, определяемыми выражением (3-7) для заданных значений a, b и l (m = 0, 2, 4, ... для прозрачных и m = 1, 3, 5, ... для непрозрачных колец). Если поместить зон­ную пластинку на расстоянии а от то­чечного источника и на расстоянии b от точки наблюдения на линии, соединяющей эти две точки, то для света длиной волны l она перекроет четные зоны и оставит сво­бодными нечетные начиная с центральной. Результирующая ам­плитуда A=А135+…  должна быть больше, чем при полностью открытом фронте. На опыте зонная пластинка во много раз увеличивает ин­тенсивность света в точке М, действуя подобно собирающей линзе.

3.3. Дифракция Френеля на круглом отверстии

Сферическая волна, идущая из точечного источника S, встречает на своем пути экран с круглым отверстием. Дифракционная картина наблюдается на экране (Э) в точке В, лежащей на линии, соединяющей источник S с центром отверстия. Экран параллелен плоскости отвер­стия и находится от него на расстоянии b (рис. 3-4). Разобьем открытую часть волновой по­верхности Ф на зоны Френеля. Вид диф­ракционной картины зависит от числа зон Френеля, укладывающихся в отверстии. Амплитуда результирующего колебания, возбуждаемого в точке В всеми зонами (см. (3-1) и (3-6)),

,                             (3-8)

где знак плюс соответствует нечетным m, а знак минус — четным.

Если отверстие открывает нечетное число зон Френеля, то амплитуда в точке В будет больше, чем при свободном распространении волны, если четное, то амплитуда бу­дет равна нулю. Если в отверстие уклады­вается одна зона Френеля, то в точке В амплитуда A=А1, т. е. вдвое больше, чем в отсутствие непрозрачного экрана с отверстием. Интенсивность света больше соответственно в четыре ра­за. Если в отверстии укладываются две зоны Френеля, то из-за интерференции их действия в точке В практически уничтожат друг друга. Таким образом, дифрак­ционная картина от круглого отверстия вблизи точки S будет иметь вид чередую­щихся темных и светлых колец с центрами в точке В (если m четное, то в центре будет темное кольцо, если m нечетное — то светлое кольцо), а интенсивность максимумов убывает с расстоянием от центра картины. Если отверстие освещается бе­лым светом, то кольца будут окрашены.

Число зон Френеля, укладывающихся в отверстии, зависит от его диаметра. Если он большой, то Аm<<А1 и результирующая амплитуда А=А1/2, т.е. такая же, как и при полностью открытом волновом фрон­те. При этом дифракционной картины нет — свет распространяется, как и в отсутствие круглого отверстия, прямо­линейно.

3.4. Дифракция Френеля на диске

Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск. Дифракционную картину наблюдаем на экране (Э) в точке В, лежащей на линии, соединяющей S с центром диска. Закрытый диском участок фронта волны надо исклю­чить из рассмотрения и зоны Френеля строить начиная с краев диска (рис. 3-5). Пусть диск закрывает m зон Френеля. Амплитуда результирующего колебания в точке В равна

 или

А=Аm+1/2, так как выражения, стоящие в скобках, равны нулю. Следовательно, в точке В будет всегда наблюдаться интерференционный максимум (светлое пятно), соответствую­щий половине действия первой открытой зоны Френеля. Центральный максимум ок­ружен концентрическими с ним темными и светлыми кольцами, а интенсивность максимумов убывает с расстоянием от центра картины.

С увеличением радиуса диска первая открытая зона Френеля удаляется от точ­ки В и увеличивается угол jm (см. рис. 3-3) между нормалью к поверхности этой зоны и направлением на точку В. В ре­зультате интенсивность центрального мак­симума с увеличением размеров диска уменьшается. При больших размерах диска за ним наблюдается тень, вблизи границ которой имеет место слабая дифракционная картина. В данном случае дифракцией света можно пренебречь и считать свет распространяющимся пря­молинейно.

Отметим, что дифракция на круглом от­верстии и дифракция на диске впервые рассмотрены Френелем.

 

3.5. Дифракция Фраунгофера на одной щели

Немецкий физик И. Фраунгофер (1787— 1826) рассмотрел дифракцию плоских све­товых волн, или дифракцию в параллель­ных лучах. Дифракция Фраунгофера наблюдается в том случае, когда источник света и точка наблюдения бесконечно уда­лены от препятствия, вызвавшего диф­ракцию. Для этого достаточно точечный источник света поместить в фокусе собирающей линзы, а дифракционную картину иссле­довать в фокальной плоскости второй со­бирающей линзы, установленной за препятствием.

Рассмотрим дифракцию Фраунгофера от бесконечно длинной щели (для этого практически достаточно, чтобы длина ще­ли была значительно больше ее ширины). Пусть плоская монохроматическая свето­вая волна падает нормально плоскости узкой щели шириной MN = а (рис. 3-6, а). Опти­ческая разность хода между крайними лучами МС и ND, идущими от щели в произвольном направлении j,

,

где F — основание перпендикуляра, опу­щенного из точки М на луч ND.

Разобьем часть волновой поверхности в плоскости щели MN на зоны Френеля в виде полос, параллель­ных ребру М щели. Ширина каждой зоны выбирается таким образом, чтобы разность хода от краев этих зон была равна l/2. На ширине щели тогда уместится  зон.  (3-8) 



2020-03-18 191 Обсуждений (0)
Основы геометрической оптики. 2 страница 0.00 из 5.00 0 оценок









Обсуждение в статье: Основы геометрической оптики. 2 страница

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (191)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)