Мегаобучалка Главная | О нас | Обратная связь


В процессах сильного и электромагнитного взаимодействий четность сохраняется: в этом заключается закон сохранения четности.



2020-03-18 176 Обсуждений (0)
В процессах сильного и электромагнитного взаимодействий четность сохраняется: в этом заключается закон сохранения четности. 0.00 из 5.00 0 оценок




Однако Ц. Ли и Ч. Янг (1956 г.) показали, что при слабых взаимодействиях этот закон не выполняется.

Изотопический спин. Все адроны распределяются по небольшим группам, называемым изотопическими мультиплетами (изомультиплетами). Это — группы элементарных частиц, одинаковым образом участвующие в сильном взаимодействии, имеющие близкие массы, одинаковые барионные заряды, одинаковые спины и различающиеся электрическими зарядами [например, протон и нейтрон; π+, π- и π0 (см. Приложение 1). Адронам присуща изотопическаяинвариантность , заключающаяся в том, что сильное взаимодействие для всех адронов, входящих в один и тот же изомультиплет, одинаково, т. е. не зависит от электрического заряда.

Эту по существу независимость от электрических зарядов называют изотопической (или зарядовой) независимостьюсильных взаимодействий. Так, протон и нейтрон объединяют в изотопический дублет. Эти две частицы рассматриваются как различные квантовые состояния одной и той же частицы — нуклона. Изотопические триплеты — это, например, (π-, π0 , π+) и (Σ-, Σ0, Σ+). Существуют и одиночные частицы, не входящие в мультиплеты, их называют синглетами (η-мезон, Λ- и Ω-гипероны).

По аналогии с обычным спином каждому зарядовому мультиплету приписывают определенное значение изотопического спина (короче изоспина) I. Значение Iвыбирают так, чтобы 2I + 1 было равно числу частиц в мультиплете n.

n = 2 I + 1 (17.9)

Отдельным частицам мультиплета приписывают различные значения Iz проекции изоспина на ось Z в воображаемом изотопическом пространстве. Причем частице с большим электрическим зарядом — большее значение Iz . Например, для нуклонов I= 1/2, у протона Iz = +1/2, у нейтрона Iz = -1/2; для π-мезонов I= 1, тогда для π+, π0, π-соответственно Iz равно +1, 0, -1.

 С изоспином связан закон сохранения: при сильных взаимодействиях сохраняется как изоспин I, так и его проекция. При электромагнитных — только Iz , сам же изоспин Iне сохраняется. Слабые взаимодействия протекают как правило с изменением изоспина I.

Выполнение законов сохранения в сильном, электромагнитном и слабом взаимодействиях указано в таблице 17.3 знаком (+), невыполнение законов – знаком (-).

Таблица 17.3

 

Закон сохранения

 

Взаимодействие

сильное электромагнитное слабое
энергии + + +
импульса + + +
момента импульса + + +
электрического заряда + + +
лептонного заряда + + +
барионного заряда + + +
изотопического спина + + -
странности + + -
чётности + + -

Кварки

Обилие открытых и вновь открываемых адронов навела Гелл-Мана и Цвейга (1964 г.) на мысль, что все они построены из каких-то других более фундаментальных частиц. Ими была выдвинута гипотеза, подтвержденная последующими исследованиями, что все тяжелые фундаментальные частицы – адроны – построены из более фундаментальных частиц, названных кварками. На основе кварковой гипотезы не только была понята структура уже известных адронов, но и предсказано существование новых.

В настоящее время практически доказано, что все адроны (мезоны, барионы, резонансы) состоят из кварков — фундаментальных частиц, у которых имеются и античастицы — антикварки. Существуют шесть типов (или ароматов) кварков: и, d, s, с, b, t (данные об открытии кварка t пока требуют дальнейшего уточнения). Кварки обладают необычными свойствами, прежде всего дробным электрическим зарядом (зарядыантикварков имеют обратный знак). Все кварки имеют спин 1/2 и барионный заряд В = 1/3. Согласно модели Гелл-Мана—Цвейга, все известные в то время адроны можно было построить, постулировав существование кварков  и соответствующих им антикварков, если им приписать характеристики, указанные в табл. 17.4.

                                                                                                           Таблица 17.4

Кварк   Символ кварка (антикварка) Электрический заряд, Q [e] Барионное число, B Спин [ħ] Странность, S
Верхний (up)       0
Нижний (down)       0
Странный (strange)       -1 (+1)
Очарованный (charm)         -1 (+1)
Прелестный (beauty)         0
Истинный (truth)   0

 Согласно кварковой модели, все барионы = 1) состоят из трех кварков, а мезоны (B = 0) — из пары кварк — антикварк. Примеры образования некоторых мезонов и барионов из кварков представлены в табл. 17.5.

                                                                                      

 

Таблица 17.5.

Мезоны

Барионы

Частица Состав Частица Состав
π+ p uud
π-
K + n udd
K -
K0 Σ + uus
Σ - dds

 

В теории вводятся новые квантовые числа: шарм (очарование) С и красота (прелесть) b. Эти квантовые числа являются аналогами квантового числа странности S. Кварк s является носителем странности, с шарма (очарования), b красоты. Квантовые числа С и b сохраняются только в сильных и электромагнитных взаимодействиях. Поскольку квантовые числа С и b присущи немногим, причем экзотическим, частицам ( D- и F-мезоны, ΛC-, Λb-барионы), мы этим и ограничимся.

Соответствующие антикварки отличаются от кварков знаками зарядов Q, В, S, С и b.

Модель кварков удачно описала все многообразие адронов, в том числе и некую группировку их по свойствам. В модели кварков предполагается наличие у кварков ранее неведомого заряда. Этот заряд должен был иметь три различных значения, в отличие от элементарного электрического заряда, принимающего два значения ±1. Новый заряд назвали цветом, а его значения — условно красным, синим и желтым. Наблюдаемые адроны цветового заряда не имеют, т. е. они «бесцветны». Отсюда следуют свойства цветового заряда: 1) любой цвет компенсируется антицветом(чтобы объяснить бесцветность мезонов, состоящих из кварка и антикварка) и 2) смесь всех трех цветов дает бесцветное («белое») состояние — это нужно для объяснения бесцветности адронов, состоящих из трех кварков. Т. е. протон, например, состоит из красного кварка и, синего кварка и и желтого кварка d, так что в целом он нейтрален по отношению к цветовому заряду («бесцветен»). Пи-плюс-мезон π+ состоит, скажем, из красного кварка и и антикрасного антикварка  и тоже «бесцветен».

Следует подчеркнуть, что цветовой заряд кварков ничего общего, кроме аналогии, не имеет с обычным цветом, где любые оттенки могут быть получены смешиванием трех базовых цветов. В 1976г. М. Гелл-Манн построил квантовую теорию цветовых взаимодействий. Согласно этой теории (ее назвали квантовой хромодинамикой) цветовой заряд порождает особое поле, подобно тому, как заряд электрический порождает электрическое поле. Кванты этого поля называются глюонами(от англ. glue— клей), так как они «склеивают» кварки в адронах. Роль глюонов сводится к «перекрашиванию» кварка. Глюон несет пару цветов (например, синий и антикрасный). Такой глюон, при поглощении красным кварком, компенсирует красный цвет и окрашивает кварк в синий, в результате чего кварки удерживаются вместе. Поэтому при испускании и поглощении глюонов цвет кварков изменяется, но их аромат при этом сохраняется. Например, u-кварк не превращается в s-кварк. Согласно модели цветных кварков, последние, не нарушая бесцветности адронов, беспрестанно изменяют в них свою окраску.

Таким образом, в квантовой хромодинамике взаимодействие между кварками осуществляется путем обмена безмассовыми частицами - глюонами. Наблюдаемые адроны (мезоны и барионы) составлены из «бесцветных» комбинаций кварков, а наблюдаемые сильные взаимодействия между ними — это «остаток» цветового взаимодействия кварков, входящих в их состав.

Ряд экспериментальных данных указывает с несомненностью на реальное существование кварков. К их числу относятся результаты изучения рассеяния быстрых электронов нуклонами и другими адронами. Анализ полученных результатов привел к заключению, что внутри адронов электроны рассеиваются на точечных частицах с электрическими зарядами +2/3 и -1/3, причем эти частицы (кварки) ведут себя как бесструктурные точечные элементы.

 Вместе с тем все попытки наблюдать кварки в свободном состоянии оказались безуспешными. Это привело к выводу, что кварки могут существовать только внутри адронов и в принципе не могут наблюдаться в свободном состоянии. Появился даже применительно к кваркам термин конфайнмент (от английского confinement, что означает тюремное заключение). Причиной конфайнмента является необычное поведение сил взаимодействия кварков друг с другом. При малых расстояниях эти силы крайне малы, так что кварки оказываются практически свободными (это состояние называется асимптотической свободой). Однако с увеличением расстояний между кварками силы взаимодействия очень быстро растут, не позволяя кваркам вылететь из адрона.

В настоящее время лептоны и кварки считают фундаментальными частицами. Всего к настоящему времени обнаружено уже три пары лептонов и, в составе адронов, три пары кварков. Эти пары частиц называют поколениями. Каждой паре кварков в поколении должна соответствовать пара лептонов. Число пар лептонов и кварков должно совпадать, иначе окажется противоречивой другая теория, объединяющая электромагнитные и слабые взаимодействия. Таким образом, современная таблица (табл. 17.6) для свойств фундаментальных частиц имеет простой вид.

                                                                                                            Таблица 17.6

Поколения 1 2 3 Электрический заряд
Кварки u c t 2/3
  d s b -1/3
Лептоны νе νμ ντ 0
  е μ τ -1

 Стандартная теория

Электрослабые взаимодействия. Вайнберг, Глэшоу и Салам (70-ые годы XX столетия) создали единую теорию электрослабых(т. е. электромагнитных и слабых) взаимодействий. Из этой теории вытекает, что переносчиком слабых взаимодействий является группа частиц, получивших название промежуточных векторных бозонов. В эту группу входят две заряженные частицы (W+ и W-) и одна нейтральная (Z0) (W — первая буква английского слова weak — слабый). Таким образом, слабые взаимодействия подобны электромагнитным, переносчиками которых также являются векторные бозоны — фотоны. Векторными называются частицы со спином, равным единице (и отрицательной четностью). В отличие от фотона, эти частицы весьма массивны, что объясняет проявление слабых взаимодействий на очень коротких расстояниях (см. табл. 17.1), в отличие от дальнодействующих электромагнитных.

Промежуточные бозоны, обнаруженные в 1982— 1983 гг, — нестабильные частицы. Характерные схемы распада промежуточных бозонов имеют вид

(17.10)

Бета-распад происходит за счет слабого взаимодействия. Следовательно, в нем должен участвовать промежуточный бозон. В соответствии с этим, например, распад нейтрона

, (17.11)

в действительности представляет собой двухступенчатый процесс:

 затем (17.12)

Стандартная модель. Теория взаимодействия фундаментальных частиц (шести кварков и шести лептонов плюс такое же число их античастиц), обменивающихся глюонами (сильные взаимодействия), фотоном и тройкой бозонов (электрослабые взаимодействия) известна как Стандартная теория, или Стандартная модель. Она синтезирует современные представления обо всех элементарных частицах и трех фундаментальных взаимодействиях — сильном, электромагнитном и слабом. Гравитационное взаимодействие модель не рассматривает, поскольку его влияние в процессах физики частиц при достигнутых энергиях пренебрежимо мало. Стандартная теория основана на совокупности экспериментальных данных и на их интерпретации, даваемой теорией электрослабого взаимодействия и квантовой хромодинамикой.

 

 На пути к более общей физической теории

За пределами Стандартной модели сейчас идет только поиск, устоявшейся теории нет. Существуют гипотезы о том, что кварки и лептоны сами состоят из более фундаментальных частиц – "преонов". То же относится к W+, W- и Z0-бозонам.

Было принято считать, что масса нейтрино равна нулю, хотя теоретических оснований к этому нет. Более того, имеются определенные экспериментальные указания на то, что масса нейтрино отлична от нуля и составляет величину примерно в миллион раз меньшую массы электрона. Если это так, то возможны процессы превращения нейтрино одного вида в нейтрино другого — осцилляции нейтрино .

После открытий в современной физике значительно возросла уверенность в том, что все виды взаимодействия тесно связаны между собой и, по существу, являются различными проявлениями некоторого единого поля. Прилагаются значительные усилия в попытках рассмотреть на единой основе не только электромагнитное и слабое, но и сильное взаимодействие. Эта теория получила название Великого объединения.

В настоящее время считается доказанным, что единое поле, объединяющее все виды взаимодействия, может существовать только при чрезвычайно больших энергиях частиц, недостижимых на современных ускорителях. Такими большими энергиями частицы могли обладать только на самых ранних этапах существования Вселенной, которая возникла в результате так называемого Большого взрыва (Big Bang). Космология – наука об эволюции Вселенной – предполагает, что Большой взрыв произошел примерно 14 миллиардов лет тому назад. В стандартной модели эволюции Вселенной предполагается, что в первый период после взрыва температура могла достигать 1032 К, а энергия частиц E = kT достигать значений 1019 ГэВ. В этот период материя существовала в форме кварков и нейтрино, при этом все виды взаимодействий были объединены в единое силовое поле. Постепенно по мере расширения Вселенной энергия частиц уменьшалась, и из единого поля взаимодействий сначала выделилось гравитационное взаимодействие (при энергиях частиц ≤ 1019 ГэВ), а затем сильное взаимодействие отделилось от электрослабого (при энергиях порядка 1014 ГэВ). При энергиях порядка 103 ГэВ все четыре вида фундаментальных взаимодействий оказались разделенными. Одновременно с этими процессами шло формирование более сложных форм материи – нуклонов, легких ядер, ионов, атомов и т. д. Космология в своей модели пытается проследить эволюцию Вселенной на разных этапах ее развития от Большого взрыва до наших дней, опираясь на законы физики элементарных частиц, а также ядерной и атомной физики.

       На рубеже XIX-XX веков, кризис в физике успешно разрешился созданием теории относительности и квантовой механики, которые полностью перевернула наши представления об окружающем мире. А ведь совсем незадолго до эпохальных событий лорд Кельвин сказал свою знаменитую фразу о том, что в физике ничего нового сделать нельзя. Но в последние годы двадцатого века произошли новые эпохальные события. Обнаружилось, что результаты измерений гравитационной массы, полученные разными методами, расходятся. И физики заговорили о некой темной материи, которая взаимодействует с обычной только с помощью силы тяготения.

Затем вдруг оказалось, что Вселенная последние два миллиарда лет расширяется с ускорением, то есть взрывается во второй, после Большого взрыва, раз. Это наблюдение породило еще одну сущность - темную энергию. Этой таинственной субстанции дали много других названий - от квинтэссенции и физического вакуума, наполненного невидимой энергией до лямбда-членауравнений Эйнштейна. А еще ее называют антигравитацией, потому что чем больше темной энергии где-то сосредоточится, тем сильнее в этом месте массы будут друг от друга отталкиваться - в полном противоречии с законом тяготения Ньютона.

После того, как вдруг выяснилось, что 95% Вселенной состоит неизвестно из чего, возникает широкий простор для поиска, для создания новых теорий, порой очень смелых.


 

 

Приложение 1.

 

Примечание. Античастицы имеют тождественные с частицей значения массы, времени жизни, спина и изоспина и противоположные по знаку значения электрического, лептонного L и барионного B зарядов, проекции изоспина и странности S.

 

 


[1] Название «плоскость поляриза­ции» следовало бы дать не плоскости магнитных колебаний, как это получилось по историческим причинам, а плоскости электрических колебаний.

 

[2] Открыт в 1810 г. французским физиком Э.Л.Малюсом (1775-1812).

[3] При отражении от проводящей поверхности (например, от поверхности металла) получается эллиптически поляризованный свет.

 

[4] Изобретена в 1828 г. английским физиком У. Николем (1768-1851).

[5] Д. Керр (1824-1904) — шотландский физик.

 



2020-03-18 176 Обсуждений (0)
В процессах сильного и электромагнитного взаимодействий четность сохраняется: в этом заключается закон сохранения четности. 0.00 из 5.00 0 оценок









Обсуждение в статье: В процессах сильного и электромагнитного взаимодействий четность сохраняется: в этом заключается закон сохранения четности.

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:
Организация как механизм и форма жизни коллектива: Организация не сможет достичь поставленных целей без соответствующей внутренней...
Почему наличие хронического атрофического гастрита способствует возникновению и развитию опухоли желудка?
Как вы ведете себя при стрессе?: Вы можете самостоятельно управлять стрессом! Каждый из нас имеет право и возможность уменьшить его воздействие на нас...
Почему стероиды повышают давление?: Основных причин три...



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (176)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.012 сек.)