Мегаобучалка Главная | О нас | Обратная связь


Основы геометрической оптики. 3 страница



2020-03-18 240 Обсуждений (0)
Основы геометрической оптики. 3 страница 0.00 из 5.00 0 оценок




Если свет на щель падает нормально, то плоскость щели совпадает с фронтом волны и все точки фронта в плоскости щели будут колебаться в одной фазе. Амплитуды вторичных волн в плоскости щели будут равны, т.к. выбранные зоны Френеля будут иметь равные площади и одинаковый наклон к направлению наблюдения.

Как следует из (3-8), число зон Френеля, укладывающихся на ширине щели, зависит от угла j  и определяет ре­зультат наложения всех вторичных волн. При интерференции колебания от каждой пары соседних зон взаимно погашают друг друга, следова­тельно, если число зон Френеля четное, т.е. , то   (3-9)        

где m – натуральный ряд чисел, m = 1, 2, 3, … .

       Таким образом в точке В наблюдается дифракционный минимум (полная темнота) первого, второго, третьего и т.д. порядков.

Если число зон Френеля нечетное, т.е. , то                (3-10)

где m – натуральный ряд чисел, m = 0, 1, 2, 3, … и наблюдается дифракционный максимум нулевого, первого, второго, третьего и т.д. порядков, соответствующий действию одной некомпенсированной зоны Френеля.

В прямом направлении (j = 0) щель действует как одна зона Френеля, и свет распространя­ется с наибольшей интенсивностью, т. е. в точке В0 наблюдается центральный дифракционный максимум.

Распределение ин­тенсивности (дифракционный спектр), получаемое из-за дифракции, приведено на рис. 3-6, б. Положение дифракционных максиму­мов зависит от длины волны l, поэтому такой вид дифракционная карти­на имеет лишь для монохроматического света. При освещении щели белым светом центральный максимум имеет вид белой полоски; он общий для всех длин волн (при j = 0 разность хода равна нулю для всех l).

Справа и слева от центрального видны максимумы пер­вого, второго и других порядков, причем ближе к центру дифракционной картины располагается фиолетовый край спектра (т.к. длина волны фиолетового света меньше длины волны красного света и в соответствие с формулой (3-10) угол отклонения фиолетовых линий меньше угла отклонения линий красного цвета для конкретного порядка.

3.6. Дифракция Фраунгофера на дифракционной решетке

Одномерная дифракционная решетка — система параллельных щелей равной ширины, лежащих в одной плоскости и разделенных равными по ши­рине непрозрачными промежутками. На рис. 3-7 для наглядности показаны только две соседние щели MN и CD. Ширина каждой щели а, а ширина не­прозрачных участков между щелями b, величина      d = a + b называется постоянной дифракционной решетки (периодом). Щели находятся друг от друга на одинаковых расстояниях поэтому разности хода лучей, идущих от соседних щелей, будут для данного направления j одина­ковы в пределах всей дифракционной решетки:

.               (3-11)

    В точке В на экране в фокальной плоскости линзы соберутся лучи, которые до линзы были параллельны между собой и распространялись под углом j  к направлению падающей волны.

Колебание в точке В является результатом интерференции вторичных волн, проходящих от разных щелей. Для того, чтобы в точке В наблюдался интерференционный максимум, разность хода Δ между волнами, испущенными соседними щелями, должна быть равна целому числу длин волн (четному числу полуволн):

(m=0, 1, 2, …).              (3-12)

    При разности хода, равной нечетному числу полуволн, в точке В будет наблюдаться интерференционный минимум:

(m=0, 1, 2, …).                (3-13)

    При пропускании через решетку белого света все максимумы, кроме цен­трального (m = 0), разложатся в спектр, фиолетовая область которого будет обра­щена к центру дифракционной картины, красная — наружу. Это следует из формулы (3-12) в которой угол отклонения m – го максимума j ~ l. Это используется для иссле­дования спектрального состава света (оп­ределения длин волн и интенсивностей всех монохроматических компонентов), т. е. дифракционная решетка может быть использована как спектральный прибор. Распределение энергии по спектрам разных порядков показывает, что значительная часть энергии сосредоточе­на в спектре нулевого порядка (рис. 3-6, б ) и по мере перехода к высшим порядкам энергия быстро убывает.   Спектральные приборы, снабженные таки­ми дифракционными                                                                                                                                                                                                                                                решетками, были бы мало светосильны. Устранить данный недостаток предложил английский физик Дж. У. Рэлей, а осуществил это предложение американский физик Р.У.Вуд. Было предложено ввести дополнительную разность хода в пре­делах каждого штриха решетки. С этой целью решетку гравируют так, что каждая борозда имеет определенный профиль, благодаря чему при отражении (или при прохождении) возникает добавочная раз­ность хода от одного края борозды до другого (рис. 3-8). Подбирая профиль борозды, удается сконцентрировать энергию в спектре того или иного порядка, ослабляя остальные, в том числе и самый яркий спектр нулевого порядка. Решетки подобного типа позволили сделать дифракционные спектрографы инструментом, превосходящим по све­тосиле обычные

 

призматические спектрографы.

Решетки, изображенные на рис. 3-8, представляют собой фазовые решетки, отдельные элементы которых отличаются не различием в отражающей или пропускающей способности, влияю­щей на амплитуду волны, а своей способностью изменять фазу волны. В данном случае изменение фазы происходит вследствие геометриче­ской формы пластинки, отражающей или пропускающей волну.

Мож­но воздействовать на фазу волны за счет различия в показателе преломления пропускающего слоя при его неизменной толщине; тако­го рода фазовые решетки удается создавать, вызывая в прозрачном теле ультраакустическую волну.

Фазовая отражательная решетка, использующая различие в изменении фазы при полном вну­треннем отражении от се­ребра и стекла показана на рис. 3-9. Для этого на гипотенузную грань стеклянной 90-градусной поворотной призмы были нанесены полоски серебра, которые разделены полосками стекла без серебрения. При падении света со стороны стекла интен­сивность света, отраженного от тех или иных полосок, практичес­ки одинакова (за счет полного внутреннего отражения), но возникает разли­чие в фазах, которое и приводит к обра­зованию дифракционной картины. Возможны, конечно, решетки амплитудно-фазовые, т.е. воздей­ствующие одновременно как на фазу, так и на ам­плитуду.

3.7. Дифракция на пространственной решетке

Дифракция света наблюдается не только на плоской одномерной решетке (штрихи нанесены перпендикулярно некоторой пря­мой линии), но и на двумерной решетке (штрихи нанесены во взаимно перпендику­лярных направлениях в одной и той же плоскости). Большой интерес представля­ет также дифракция на пространственных ( трехмерных ) решетках — пространствен­ных образованиях, в которых элементы структуры подобны по форме, имеют гео­метрически правильное и периодически по­вторяющееся расположение, а также по­стоянные (периоды) решеток, соизмери­мые с длиной волны электромагнитного Для наблюдения дифракционной картины необходимо, чтобы постоянная решетки была того же порядка, что и длина волны падающего излучения. Кристаллы, являясь трехмерными пространственными решетками, имеют постоянную порядка 10-10 м и непригодны для наблюдения дифракции в видимом свете (l ~ 5×10-7 м). Не­мецкий физик М. Лауэ (1879—1960) пришёл к выводу, что в качестве естествен­ных дифракционных решеток для рентге­новского излучения можно использовать кристаллы, поскольку расстояние между атомами в кристаллах одного порядка с длиной волны l рентгеновского излучения (»10-12 ¸10-8 м).

Советский физик Г.В. Вульф и английские физики Г. и Л. Брэгг независимо друг от друга предложили простой метод расчета дифракции рентгеновского излучения от кристалличе­ской решетки. Они предположили, что происходит дифракция рентгеновских лучей при их отражении от системы па­раллельных кристаллографических плос­костей отстоящих друг от друга на расстоянии d (плоскостей, в которых лежат атомы кристаллической решетки). Монохроматический пучок параллель­ных рентгеновских лу­чей (1,2) падает под углом скольжения     (между направлением падающих лу­чей и кристаллографической плоскостью) и возбуждает атомы кристаллической ре­шетки, которые становятся источниками когерентных вторичных волн 1' и 2', интер­ферирующих между собой, подобно вто­ричным волнам, от щелей дифракционной решетки  (рис. 3-10).

Диф­ракционные максимумы наблюдаются в направлениях, в которых все волны, отра­женные атомными плоскостями, бу­дут находиться в одинаковой фазе. Эти направления удовлетворяют формуле Вульфа — Брэггов

 (m=1, 2, 3, ...),              (3-14)

т. е. при разности хода между двумя лучами, отраженными от соседних кри­сталлографических плоскостей, кратной целому числу длин волн l, наблюдается дифракционный максимум. Если рентгеновское излучение падает на кристалл под углами скольжения отличными от угла , который  удовлетворяет соотношению (3-14), то дифракция не воз­никает.

Формула Вульфа — Брэггов использу­ется при решении двух задач:

1. Наблюдая дифракцию рентгенов­ских лучей известной длины волны на кристаллической структуре неизвестного строения и измеряя и m, можно найти межплоскостное расстояние (d), т. е. оп­ределить структуру вещества (рентгеноструктурный анализ кристаллов).

2. Наблюдая дифракцию рентгенов­ских лучей неизвестной длины волны на кристаллической структуре при известном d и измеряя и m, можно найти длину волны падающего рентгеновского излуче­ния. Этот метод лежит в основе рентгенов­ской спектроскопии.

 

 

Лекция 5 (2 часа)

 

Поляризация света.

(Поляризация света. Плоскополяризованный свет. Способы получения плоско поляризованного света. Призма Николя. Закон Малюса. Поляризация света при отражении и преломлении на границе двух диэлектриков. Закон Брюстера. Двойное лучепреломление. Явление дихроизма. Эффект Керра. Поляроиды и поляризационные призмы. Вращение плоскости поляризации. Интерференция поляризованного света. Практическое применение поляризации.)

 Естественный и поляризованный свет

Свет, излучаемый отдельным атомом – это электро­магнитная волна, т. е. совокупность двух поперечных взаимно пер­пен-дикулярных волн — электрической (образованной колебанием век­тора напряженности электрическо­го поля ) и магнитной (образо­ванной колебанием вектора напряженности магнитного поля ), идущих вдоль общей прямой , на­зываемой световым лучом (рис. 4-1).

Свет, у которого колебания век­тора  - напряженности электрическо­го поля каким-либо образом упорядочены, называется поляризованным. Вектор напряженности магнитного поля колеблется в другой (перпендику­лярной) плоскости (названной пло скостью поляризации света).

Опыт и теория показывают, что физиологическое, химическое и другие виды воздействия света на вещество обусловлены главным образом электрическими колебаниями[1]. Поэтому, а также для упро­щения рисунков, изображающих световую волну, мы бу­дем в дальнейшем говорить только об электрических колебаниях, а плоскость, в которой они совершаются, называть плоскостью све­ товых колебаний, или плоскостью колебаний.

Свет представляет собой суммарное электромагнитное излучение множества атомов, которые излучают независимо друг от друга, поэтому световая волна, излучаемая всем телом, характеризуется всевозможными рав­новероятными колебаниями светового век­тора (рис. 4-2,а; луч перпендикулярен плоскости рисунка). Рав­номерное распределение векторов  объясняется большим числом атомарных излучателей, а равенство амплитуд векторов - одинаковой интенсивностью излучения каждого из атомов. Свет со всевозможны­ми равновероятными ориентациями векто­ра  (и вектора ) называется естественным.

Если в результате внешних воздействий появляется преобладающее на­правление колебаний вектора , то свет называется частично поляризованным (рис. 4-2, б). Свет, в котором вектор  колеблется только в одном направлении, перпендику­лярном лучу (рис. 4-2, в), называется плоскополяризованным (линейно поляри­зованным).

Плоскополяризованный свет является предельным случаем эллиптически поляризованного света — света, для которого вектор  (вектор ) со временем описывает эллипс в плоскости, перпендикулярной лучу. Если эллипс вырождается в прямую, то имеем дело с рассмотренным выше плоскополяризо­ванным светом, если в окружность, то имеем дело с циркулярно поляризованным (поляризованным по кру­гу) светом.

Степенью поляризации называется ве­личина

                                  (4-1)

где  и  — максимальная и мини­мальная интенсивности света. Для естественного света =  и Р = 0, для плоскополяризованного света = 0 и Р = 1.

Естественный свет можно преобразо­вать в плоскополяризованный, используя поляризаторы, пропуска­ющие колебания определенного на­правления (например, пропускающие ко­лебания, параллельные плоскости поляри­затора, и полностью задерживающие колебания, перпендикулярные этой плоскости). В качестве поляризаторов используются среды, анизотроп­ные в отношении колебаний вектора , например кристаллы турмалина. В каждом кристалле имеется направление, относительно которого атомы (или ионы) кристаллической решетки расположены симметрично. Направление в оптически анизотропном кристалле, по которому луч света распространяется, не испытывая двойного лучепреломления, называет­ся оптической осьюкристалла. У некоторых кристаллов имеется два таких направления; эти кристаллы называются двухосными. Турмалин относится к одноосным кристаллам. Подчеркнем, что оптическая ось — это не одна линия, а определенное направление в кристалле; все прямые, про­веденные в кристалле параллельно этому направлению, являются оптическими осями. Кристал­лы в зависимости от типа их симметрии бывают одноосные и двуосные, т. е. имеют одну или две оптические оси (к первым и относится исландский шпат).

Турмалин представляет собой двояко-преломляющий кристалл, в котором один из лучей (обыкновенный) поглощается значительно сильнее, чем другой. Поэтому из пластинки турмалина оба луча, поляризованных во взаимно перпендикулярных плоскостях, выходят с весьма различной интенсивностью, и прошед­ший через нее свет оказывается частично поляризованным. Если взять достаточно толстую (около 1 мм) пластинку турмалина, то в случае видимого света обыкновенный луч практически целиком поглощается и вышедший свет будет плоскополяризованным.

Различие в поглощении лучей разной поляризации влечет различие в поглощении естественного света в зависимости от направ­ленияего распространения, т.к. от этого зависит ориен­тация электрического вектора волны относительно кристаллографических направлений. Такое различие в поглощении, зависящее, кроме того, от длины волны, приводит к тому, что кристалл по разным на­правлениям оказывается различно окрашенным. Это явление носит название дихроизма. Оно было открыто Кордье (1809 г.) на минерале, названном кордиеритом. Дихроизм турмалина был обнару­жен Био и Зеебеком (1816 г.).

Естественный луч, прошедший через пластинку тур­малина 1, вырезанную параллельно оптической оси ОО' кристалла, полностью поляризуется и имеет электрические колебания только в главной плоскостиQ (главном сечении кристалла), т.е. в плоскости, проходящей через направ­ление луча света и оптическую ось кристалла (рис. 4-3).

Если естественный луч идет вдоль оптической оси, то все его электрические колебания перпендикулярны ей. В таком случае (благодаря симметричному рас­положению частиц кристалла относительно оптической оси) все электрические колебания совершаются в одинаковых условиях и все они проходят через кри­сталл. Поэтому
естественный луч, идущий вдоль оптической оси, не поляризу­ется.

Если за пластинкой 1 помещена вторая пластинка турмалина 2, ориентированная так, что ее оптическая ось перпендикулярна оптической оси пластинки 1, то через вторую пластинку луч не пройдет, т.к. его эле­ктрические колебания перпендикулярны гла­вной плоскости Qпластинки 2. Если же оп­тически оси пластинок 1и 2 составляют угол a, отличный от 900, то свет проходит через пластинку 2. Амплитуда  световых колебаний, прошедших через пластинку 2, будет меньше амплитуды световых колебаний, падающих на эту пластинку (рис. 4-4):

.

Интенсивность света пропорциональна квадрату ампли­туды световых колебаний, поэтому

,                               (4-2)

где I1— интенсивность света, падающего на пластинку 2,

I — интен­сивность света, прошедшего через эту пластинку.

Соотношение (4-2) называется законом Малюса[2].

Таким образом, поворот пластинки 2вокруг поляризованного лу­ча приводит к изменению интенсивности света, прошедшего через эту пластинку; максимум интенсивности имеет место при   a = 0°, минимум (соответствующий полному гашению света) — при a = 90°.

Пластинка 1, поляризующая естественный свет, называется поля­ризатором. Пластинка 2, служащая для анализа степени поляризации, называется анализатором. Обе пластинки совершенно одинаковы (их можно поменять местами); эти назва­ния характеризуют лишь назначение пластинок.

При пропускании естественного света че­рез две пластины, плоскости которых образуют угол a, то из первой выйдет плоскополяризованный свет интенсив­ностью , из второй, со­гласно  (4-2), интенсивно­стью .

Следовательно, интенсивность света, прошедшего через две пластинки,

,

Откуда

      

(пластинки па­раллельны) и  

      

(пластинки скрещены).

 

 

4.2. Поляризация света при отражении и преломлении         на границе двух диэлектриков

Если угол падения света на границу раздела двух ди­электриков не равен нулю, отраженный и преломленный лучи оказываются частично поляризованными[3]. В от­раженном луче преобладают колебания, перпендикуляр­ные к плоскости падения (на рис. 4-5 они обо­значены точками), в преломленном луче — колебания, параллельные плоскости падения (на рисунке они изо­бражены стрелками). Степень поляризации зависит от угла падения лучей и показателя преломления. Шотландский физик Д. Брюстер (1781-1868) в 1815 г. установил закон, согласно которому угол полной поляризации aB зависит от относительного показателя преломления отражающей среды

.                                       (4-3)

. Следовательно ,

но =  - закон отражения, поэтому .

Отраженный луч является плоскополяризованным (со­держит только колебания, перпендикуляр­ные плоскости падения), пре­ломленный луч пре­ломленный луч оказывается частично по­ляризованным. Если свет падает на границу раздела под углом Брюстера, то отраженный и преломленный лучи взаимно перпендику­лярны.

Степень поляризации преломленного света может быть значительно повышена (многократным преломлением при условии падения света каждый раз на границу раздела под углом Брюстера). Если, на­пример, для стекла степень по­ляризации преломленного луча составляет »15 %, то после преломления на 8-10 наложенных друг на друга стеклянных пластинок вышедший из такой системы свет будет практически полностью поляри­зованным. Такой набор пластинок называется стопой Столетова.

4.3. Двойное лучепреломление. Призма Николя

Все прозрачные кристаллы (кроме кристаллов кубической системы, которые оптически изотропны) обладают способно­стью двойного лучепреломления, т. е. раз­двоения каждого падающего на них светового пучка. Это явление, в 1669 г. обнаружено датским ученым Э.Бартолином (1625—1698) для исландского шпата (разновидность каль­цита СаСОз).

Если на толстый кристалл исландского шпата направить узкий пучок света, то из кристалла выйдут два пространственно разделенных луча, параллельных друг другу и падающему лучу (рис. 4-6). Даже в том случае, когда первичный пучок пада­ет на кристалл нормально, преломленный пучок разделяется на два, причем один из них является продолжением первичного, а второй отклоняется (рис.4-7). Второй из этих лучей получил название необыкно­венного (е), а первый — обыкновенно­го (о).

Анализ поляризации света показывает, что вышедшие из кристалла лучи плоско поляризованы во взаимно перпенди-кулярных плоскостях: колебания светового вектора (вектора      на­пряженности  электрического поля) в обыкновенном луче происходят перпен­дикулярно главной плоскости, в необыкно­венном — в главной плоскости.

Неодинаковое преломление обыкно­венного и необыкновенного лучей указы­вает на различие для них показателей преломления. При любом направлении обыкновенного луча колеба­ния светового вектора перпендикулярны оптической оси кристалла, поэтому обык­новенный луч распространяется по всем направлениям с одинаковой скоростью и, следовательно, показатель преломления n 0 для него есть величина постоянная. Для необыкновенного луча угол между на­правлением

 

колебаний светового вектора и оптической осью отличен от прямого и зависит от направления луча, поэтому необыкновенные лучи распространяются по различным направлениям с разными скоростями. Следовательно, показатель преломления ne необыкновенного луча  яв­ляется переменной величиной, зависящей от направления луча. Таким образом, обыкновенный луч подчиняется закону преломления (отсюда и название «обыкно­венный»), а для необыкновенного луча этот закон не выполняется. После выхода из кристалла эти два луча ничем друг от друга не отличаются, если не принимать во внима­ние поляризацию во взаимно перпендику­лярных плоскостях.

В основе работы поляризационных при­способлений лежит явление двой­ного лучепреломления. Призмы делятся на два класса: 1) призмы, дающие только плоскополяризованный луч (поляризационные при­змы); 2) призмы, дающие два поляризован­ных во взаимно перпендикулярных плоско­стях луча (двоякопреломляющие при­змы).

Поляризационные призмы построены по принципу полного отражения одного из лучей от границы раздела, в то время как другой луч с другим показате­лем преломления проходит через эту гра­ницу. Типичным представителем поляри­зационных призм

 

является призма Николя[4], называемая часто николем.

Призма Николя (рис.4-8) представляет собой двойную призму из исландского шпата, склеенную канадским бальзамом с n =1,55. Оптическая ось призмы составляет с входной гранью угол 48°.

Показатель преломления исландского шпата для обык­новенного луча n 0=1,66, а для необыкновенного ne=1,51. Для обыкновенного луча канадский бальзам является сре­дой оптически менее плотной, а для необыкновенного луча — более плотной, чем исландский шпат. Если естественный луч падает на торцовую грань призмы Николя параллельно основанию призмы АВ, то необыкновенный луч проходит через призму, почти не отклоняясь от первоначаль­ного направления, а обыкновенный луч, претерпев полное отражение от слоя канадского бальзама, поглощается зачерненной поверхностью основания АВ. Таким образом, сквозь призму Николя проходит толь­ко один поляризованный луч (необыкновенный) с электрическими ко­лебаниями в главной плоскости призмы.



2020-03-18 240 Обсуждений (0)
Основы геометрической оптики. 3 страница 0.00 из 5.00 0 оценок









Обсуждение в статье: Основы геометрической оптики. 3 страница

Обсуждений еще не было, будьте первым... ↓↓↓

Отправить сообщение

Популярное:



©2015-2024 megaobuchalka.ru Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. (240)

Почему 1285321 студент выбрали МегаОбучалку...

Система поиска информации

Мобильная версия сайта

Удобная навигация

Нет шокирующей рекламы



(0.014 сек.)